Studies of solid impact with fluid surfaces have traditionally considered splashing in the context of impactor shape and surface texture. However, it is not always possible to tune impactor properties for desired splash characteristics. In this experimental study, smooth, hydrophilic, free-falling spheres are allowed to impact a quiescent liquid surface for Weber numbers in the range of 400–1580. The liquid surface is modified by the inclusion of a thin fabric upon which a falling sphere strikes and penetrates at water entry. With respect to clean water, inclusion of a single layer of fabric on the surface increases the Worthington jet height across all entry speeds tested. As the sphere penetrates, the fabric is drawn inward, providing a fabric funnel through which a Worthington jet subsequently passes. We show that the presence of fabric increases the drag at entry and enables air-entraining cavities otherwise unattainable by hydrophilic spheres for the impact speeds tested. Such cavity formation is made possible by alteration of the flow separation angle, analogous to greater values of the advancing contact angle.

1.
Aristoff
,
J.
and
Bush
,
J.
, “
Water entry of small hydrophobic spheres
,”
J. Fluid Mech.
619
,
45
78
(
2009
).
2.
Aristoff
,
J.
,
Truscott
,
T.
,
Techet
,
A.
, and
Bush
,
J.
, “
The water entry of decelerating spheres
,”
Phys. Fluids
22
,
032102
(
2010
).
3.
Beczek
,
M.
,
Ryzak
,
M.
,
Sochan
,
A.
,
Mazur
,
R.
,
Polakowski
,
C.
, and
Bieganowski
,
A.
, “
The differences in crown formation during the splash on the thin water layers formed on the saturated soil surface and model surface
,”
PLoS One
12
,
e0181974
(
2017
).
4.
Cai
,
Y. K.
, “
Phenomena of a liquid drop falling to a liquid surface
,”
Exp. Fluids
7
,
388
394
(
1989
).
5.
Castillo-Orozco
,
E.
,
Davanlou
,
A.
,
Choudhury
,
K. P.
, and
Kumar
,
R.
, “
Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets
,”
Phys. Rev. E
92
,
053022
(
2015
).
6.
Cheny
,
J.
and
Walters
,
K.
, “
Extravagant viscoelastic effects in the Worthington jet experiment
,” Papers Presented at the
Workshop on Unresolved Experimental Dilemmas in the Dynamics of Complex Fluids
[
J. Non-Newtonian Fluid Mech.
67
,
125
135
(
1996
)].
7.
Cossali
,
G. E.
,
Marengo
,
M.
,
Coghe
,
A.
, and
Zhdanov
,
S.
, “
The role of time in single drop splash on thin film
,”
Exp. Fluids
36
,
888
900
(
2004
).
8.
Cross
,
R.
, “
Vertical impact of a sphere falling into water
,”
Phys. Teach.
54
,
153
155
(
2016
).
9.
Duez
,
C.
,
Ybert
,
C.
,
Clanet
,
C.
, and
Bocquet
,
L.
, “
Making a splash with water repellency
,”
Nat. Phys.
3
,
180
183
(
2007
).
10.
Gekle
,
S.
and
Gordillo
,
J. M.
, “
Generation and breakup of Worthington jets after cavity collapse. Part I. Jet formation
,”
J. Fluid Mech.
663
,
293
330
(
2010
).
11.
Gilbarg
,
D.
and
Anderson
,
R. A.
, “
Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water
,”
J. Appl. Phys.
19
,
127
139
(
1948
).
12.
Krishnan
,
S. R.
and
Seelamantula
,
C. S.
, “
On the selection of optimum Savitzky-Golay filters
,”
IEEE Trans. Signal Process.
61
,
380
391
(
2013
).
13.
Kubota
,
Y.
and
Mochizuki
,
O.
, “
Influence of head shape of solid body plunging into water on splash formation
,”
J. Visualization
14
,
111
119
(
2011
).
14.
Lee
,
M.
,
Longoria
,
R.
, and
Wilson
,
D.
, “
Cavity dynamics in high-speed water entry
,”
Phys. Fluids
9
,
540
550
(
1997
).
15.
Mansoor
,
M. M.
,
Marston
,
J. O.
,
Vakarelski
,
I. U.
, and
Thoroddsen
,
S. T.
, “
Water entry without surface seal: Extended cavity formation
,”
J. Fluid Mech.
743
,
295
326
(
2014
).
16.
Marston
,
J. O.
,
Truscott
,
T. T.
,
Speirs
,
N. B.
,
Mansoor
,
M. M.
, and
Thoroddsen
,
S. T.
, “
Crown sealing and buckling instability during water entry of spheres
,”
J. Fluid Mech.
794
,
506
529
(
2016
).
17.
Ogawa
,
A.
,
Utsuno
,
K.
,
Mutou
,
M.
,
Kouzen
,
S.
,
Shimotake
,
Y.
, and
Satou
,
Y.
, “
Morphological study of cavity and Worthington jet formations for Newtonian and non-Newtonian liquids
,”
Part. Sci. Technol.
24
,
181
225
(
2006
).
18.
Shi
,
H.
,
Itoh
,
M.
, and
Takami
,
T.
, “
Optical observation of the supercavitation induced by high-speed water entry
,”
J. Fluids Eng.
122
,
806
810
(
2000
).
19.
Shin
,
J.
and
McMahon
,
T. A.
, “
The tuning of a splash
,”
Phys. Fluids A
2
,
1312
1317
(
1990
).
20.
Techet
,
A.
and
Truscott
,
T.
, “
Water entry of spinning hydrophobic and hydrophilic spheres
,”
J. Fluids Struct.
27
,
716
726
(
2011
).
21.
Thoroddsen
,
S. T.
,
Etoh
,
T. G.
,
Takehara
,
K.
, and
Takano
,
Y.
, “
Impact jetting by a solid sphere
,”
J. Fluid Mech.
499
,
139
148
(
2004
).
22.
Truscott
,
T.
and
Techet
,
A.
, “
Water entry of spinning spheres
,”
J. Fluid Mech.
625
,
135
165
(
2009
).
23.
Truscott
,
T.
,
Epps
,
B.
, and
Techet
,
A.
, “
Unsteady forces on spheres during free-surface water entry
,”
J. Fluid Mech.
704
,
173
210
(
2012
).
24.
Truscott
,
T. T.
,
Epps
,
B. P.
, and
Belden
,
J.
, “
Water entry of projectiles
,”
Annu. Rev. Fluid Mech.
46
,
355
378
(
2013
).
25.
Zhao
,
S.
,
Wei
,
C.
, and
Cong
,
W.
, “
Numerical investigation of water entry of half hydrophilic and half hydrophobic spheres
,”
Math. Probl. Eng.
2016
,
1
15
.

Supplementary Material

You do not currently have access to this content.