Direct numerical simulation data obtained from a statistically stationary, 1D, planar, weakly turbulent, premixed flame, which is associated with the flamelet combustion regime, are analyzed in order to show that generation of vorticity due to baroclinic torque within flamelets can impede wrinkling the reaction surface, reduce its area, and decrease the burning rate. These data call for revisiting the widely accepted concept of combustion acceleration due to flame-generated turbulence.

1.
B.
Karlovitz
,
D. W.
Denniston
, and
F. E.
Wells
, “
Investigation of turbulent flames
,”
J. Chem. Phys.
19
,
541
(
1951
).
2.
A. C.
Scurlock
and
J. H.
Grover
, “
Propagation of turbulent flames
,”
Symp. (Int.) Combust.
4
,
645
(
1953
).
3.
P. E.
Hamlington
,
A. Y.
Poludnenko
, and
E. S.
Oran
, “
Interactions between turbulence and flames in premixed reacting flows
,”
Phys. Fluids
23
,
125111
(
2011
).
4.
B.
Bobbitt
,
S.
Lapointe
, and
G.
Blanquart
, “
Vorticity transformation in high Karlovitz number premixed flames
,”
Phys. Fluids
28
,
015101
(
2016
).
5.
N.
Chakraborty
,
I.
Konstantinou
, and
A. N.
Lipatnikov
, “
Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames
,”
Phys. Fluids
28
,
015109
(
2016
).
6.
B.
Coriton
and
J. H.
Frank
, “
Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry
,”
Phys. Fluids
28
,
025109
(
2016
).
7.
Z.
Wang
and
J.
Abraham
, “
Effects of Karlovitz number on turbulent kinetic energy transport in turbulent lean premixed methane/air flames
,”
Phys. Fluids
29
,
085102
(
2017
).
8.
A. N.
Lipatnikov
and
J.
Chomiak
, “
Effects of premixed flames on turbulence and turbulent scalar transport
,”
Prog. Energy Combust. Sci.
36
,
1
(
2010
).
9.
V. A.
Sabelnikov
and
A. N.
Lipatnikov
, “
Recent advances in understanding of thermal expansion effects in premixed turbulent flames
,”
Annu. Rev. Fluid Mech.
49
,
91
(
2017
).
10.
S.
Nishiki
,
T.
Hasegawa
,
R.
Borghi
, and
R.
Himeno
, “
Modeling of flame-generated turbulence based on direct numerical simulation databases
,”
Proc. Combust. Inst.
29
,
2017
(
2002
).
11.
S.
Nishiki
,
T.
Hasegawa
,
R.
Borghi
, and
R.
Himeno
, “
Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases
,”
Combust. Theory Modell.
10
,
39
(
2006
).
12.
Y. H.
Im
,
K. Y.
Huh
,
S.
Nishiki
, and
T.
Hasegawa
, “
Zone conditional assessment of flame-generated turbulence with DNS database of a turbulent premixed flame
,”
Combust. Flame
137
,
478
(
2004
).
13.
A.
Mura
,
V.
Robin
,
M.
Champion
, and
T.
Hasegawa
, “
Small scale features of velocity and scalar fields in turbulent premixed flames
,”
Flow, Turbul. Combust.
82
,
339
(
2009
).
14.
V.
Robin
,
A.
Mura
,
M.
Champion
, and
T.
Hasegawa
, “
Direct and indirect thermal expansion effects in turbulent premixed flames
,”
Combust. Sci. Technol.
182
,
449
(
2010
).
15.
V.
Robin
,
A.
Mura
, and
M.
Champion
, “
Modeling of the effects of thermal expansion on scalar turbulent fluxes in turbulent premixed flames
,”
J. Fluid Mech.
689
,
149
(
2011
).
16.
K. N. C.
Bray
,
M.
Champion
,
P. A.
Libby
, and
N.
Swaminathan
, “
Scalar dissipation and mean reaction rates in premixed turbulent combustion
,”
Combust. Flame
158
,
2017
(
2011
).
17.
A. N.
Lipatnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
A direct numerical simulation study of vorticity transformation in weakly turbulent premixed flames
,”
Phys. Fluids
26
,
105104
(
2014
).
18.
A. N.
Lipatnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
DNS assessment of relation between mean reaction and scalar dissipation rates in the flamelet regime of premixed turbulent combustion
,”
Combust. Theory Modell.
19
,
309
(
2015
).
19.
A. N.
Lipatnikov
,
J.
Chomiak
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Unburned mixture fingers in premixed turbulent flames
,”
Proc. Combust. Inst.
35
,
1401
(
2015
).
20.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
,
T.
Hasegawa
, and
N.
Chakraborty
, “
DNS assessment of a simple model for evaluating velocity conditioned to unburned gas in premixed turbulent flames
,”
Flow Turbul. Combust.
94
,
513
(
2015
).
21.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
N.
Chakraborty
,
S.
Nishiki
, and
T.
Hasegawa
, “
A transport equation for reaction rate in turbulent flows
,”
Phys. Fluids
28
,
081701
(
2016
).
22.
V. A.
Sabelnikov
,
A. N.
Lipatnikov
,
N.
Chakraborty
,
S.
Nishiki
, and
T.
Hasegawa
, “
A balance equation for the mean rate of product creation in premixed turbulent flames
,”
Proc. Combust. Inst.
36
,
1893
(
2017
).
23.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Flamelet perturbations and flame surface density transport in weakly turbulent premixed combustion
,”
Combust. Theory Modell.
21
,
205
(
2017
).
24.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
N.
Chakraborty
,
S.
Nishiki
, and
T.
Hasegawa
, “
A DNS study of closure relations for convection flux term in transport equation for mean reaction rate in turbulent flow
,”
Flow, Turbul. Combust.
100
,
75
(
2018
).
25.
A. N.
Lipatnikov
,
J.
Chomiak
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
A DNS study of the physical mechanisms associated with density ratio influence on turbulent burning velocity in premixed flames
,”
Combust. Theory Modell.
22
,
131
(
2018
).
26.
A. N.
Lipatnikov
,
V. A.
Sabelnikov
,
S.
Nishiki
, and
T.
Hasegawa
, “
Combustion-induced local shear layers within premixed flamelets in weakly turbulent flows
,”
Phys. Fluids
30
,
085101
(
2018
).
27.
R.
Borghi
, “
Turbulent combustion modeling
,”
Prog. Energy Combust. Sci.
14
,
245
(
1988
).
28.
D.
Veynante
and
L.
Vervisch
, “
Turbulent combustion modeling
,”
Prog. Energy Combust. Sci.
28
,
193
(
2002
).
29.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
Oxford, UK
,
1987
).
You do not currently have access to this content.