The present study aims to investigate the unsteady flow phenomenon that produces high energy stochastic fluctuations in a highly skewed blade cascade. A complex structure such as a turbine is operated at runaway speed, where the circumferential velocity is dangerously high, and the energy dissipation is so significant that it takes a toll on the operating life of a machine. Previous studies showed that a large vortical structure changes the spatial location very quickly and interacts with the secondary flow attached to the blade pressure-side. The temporal inception of the rings dissipates the energy of a wide frequency band and induces heavy vibration in the mechanical structure. The focus of the present study is to experimentally measure and numerically characterize the time-dependent inception of vortex rings in the blade cascade. The experimental data are used to verify and validate the numerical results obtained from the large eddy simulation. Flow compressibility is considered to obtain more accurate amplitudes of unsteady pressure pulsations associated with the wave propagation and reflection. The following three aspects are of particular focus: (1) How the wake from a guide vane interacts with the stagnation point of a blade, (2) how vortex rings are developed in a blade cascade, and what are the temporal characteristics, and (3) how the decelerating flow at the runner outlet interacts with the secondary flow in the draft tube.

1.
H.
Honji
, “
Streaked flow around an oscillating circular cylinder
,”
J. Fluid Mech.
107
,
509
(
1981
).
2.
B. T.
Tan
,
K. Y. S.
Liow
,
L.
Mununga
,
M. C.
Thompson
, and
K.
Hourigan
, “
Simulation of the control of vortex breakdown in a closed cylinder using a small rotating disk
,”
Phys. Fluids
21
,
024104
(
2009
).
3.
T.
Sarpkaya
, “
On stationary and travelling vortex breakdowns
,”
J. Fluid Mech.
45
,
545
(
1971
).
4.
M. G.
Hall
, “
Vortex breakdown
,”
Annu. Rev. Fluid. Mech.
4
,
195
(
1972
).
5.
A.
Ducoin
,
J. A.
Astolfi
,
F.
Deniset
, and
J.-F.
Sigrist
, “
Computational and experimental investigation of flow over a transient pitching hydrofoil
,”
Eur. J. Mech.- B/Fluids
28
,
728
(
2009
).
6.
B.
Di Pierro
and
M.
Abid
, “
Energy spectra in a helical vortex breakdown
,”
Phys. Fluids
23
,
025104
(
2011
).
7.
A.
Ducoin
,
J. A.
Astolfi
, and
J.-F.
Sigrist
, “
An experimental analysis of fluid structure interaction on a flexible hydrofoil in various flow regimes including cavitating flow
,”
Eur. J. Mech.- B/Fluids
36
,
63
(
2012
).
8.
A.
Ducoin
,
J. C.
Loiseau
, and
J. C.
Robinet
, “
Numerical investigation of the interaction between laminar to turbulent transition and the wake of an airfoil
,”
Eur. J. Mech.- B/Fluids
57
,
231
(
2016
).
9.
D.
Bourgoyne
,
J.
Hamel
,
S.
Ceccio
, and
D.
Dowling
, “
Time-averaged flow over a hydrofoil at high Reynolds number
,”
J. Fluid Mech.
496
,
365
(
2003
).
10.
D. A.
Bourgoyne
,
S. L.
Ceccio
, and
D. R.
Dowling
, “
Vortex shedding from a hydrofoil at high Reynolds number
,”
J. Fluid Mech.
531
,
293
(
2005
).
11.
S.
Pasche
,
F.
Gallaire
, and
F.
Avellan
, “
Predictive control of spiral vortex breakdown
,”
J. Fluid Mech.
842
,
58
(
2018
).
12.
R.
Goyal
,
B. K.
Gandhi
, and
M. J.
Cervantes
, “
Experimental study of mitigation of a spiral vortex breakdown at high Reynolds number under an adverse pressure gradient
,”
Phys. Fluids
29
,
104104
(
2017
).
13.
C.
Trivedi
,
B. K.
Gandhi
, and
M. J.
Cervantes
, “
Effect of transients on Francis turbine runner life: A review
,”
J. Hydraul. Res.
51
,
121
(
2013
).
14.
X.
Liu
,
Y.
Luo
, and
Z.
Wang
, “
A review on fatigue damage mechanism in hydro turbines
,”
Renewable Sustainable Energy Rev.
54
,
1
(
2016
).
15.
C.
Trivedi
and
M. J.
Cervantes
, “
Fluid structure interaction in hydraulic turbines: A perspective review
,”
Renewable Sustainable Energy Rev.
68
,
87
(
2017
).
16.
H.
Ohashi
, “
Case study of pump failure due to rotor-stator interaction
,”
Int. J. Rotating Mach.
1
,
53
(
1994
).
17.
U.
Dorji
and
R.
Ghomashchi
, “
Hydro turbine failure mechanisms: An overview
,”
Eng. Failure Anal.
44
,
136
(
2014
).
18.
A.
Luna-Ramírez
,
A.
Campos-Amezcua
,
O.
Dorantes-Gómez
,
Z.
Mazur-Czerwiec
, and
R.
Muñoz-Quezada
, “
Failure analysis of runner blades in a Francis hydraulic turbine—Case study
,”
Eng. Failure Anal.
59
,
314
(
2016
).
19.
Z.
Zuo
,
S.
Liu
,
Y.
Sun
, and
Y.
Wu
, “
Pressure fluctuations in the vaneless space of high-head pump-turbines—A review
,”
Renewable Sustainable Energy Rev.
41
,
965
(
2015
).
20.
C.
Trivedi
,
M.
Cervantes
,
B.
Gandhi
, and
O.
Dahlhaug
, “
Transient pressure measurements on a high head model Francis turbine during emergency shutdown, total load rejection, and runaway
,”
J. Fluids Eng.
136
,
121107
(
2014
).
21.
C.
Trivedi
,
M. J.
Cervantes
, and
B. K.
Gandhi
, “
Numerical investigation and validation of a Francis turbine at runaway operating conditions
,”
Energies
9
,
22
(
2016
).
22.
X.
Zhang
,
Y.
Cheng
,
L.
Xia
,
J.
Yang
, and
Z.
Qian
, “
Looping dynamic characteristics of a pump-turbine in the S-shaped region during runaway
,”
J. Fluids Eng.
138
,
091102
(
2016
).
23.
W.
Zeng
,
J.
Yang
, and
W.
Guo
, “
Runaway instability of pump-turbines in S-shaped regions considering water compressibility
,”
J. Fluids Eng.
137
,
051401
(
2015
).
24.
W.
Zeng
,
J.
Yang
,
J.
Hu
, and
J.
Yang
, “
Guide-vane closing schemes for pump-turbines based on transient characteristics in S-shaped region
,”
J. Fluids Eng.
138
,
051302
(
2016
).
25.
L.
Xia
,
Y.
Cheng
,
Z.
Yang
,
J.
You
,
J.
Yang
, and
Z.
Qian
, “
Evolutions of pressure fluctuations and runner loads during runaway processes of a pump-turbine
,”
J. Fluids Eng.
139
,
091101
(
2017
).
26.
V.
Hasmatuchi
,
M.
Farhat
,
S.
Roth
,
F.
Botero
, and
F.
Avellan
, “
Experimental evidence of rotating stall in a pump-turbine at off-design conditions in generating mode
,”
J. Fluids Eng.
133
,
051104
(
2011
).
27.
F.
Botero
,
V.
Hasmatuchi
,
S.
Roth
, and
M.
Farhat
, “
Non-intrusive detection of rotating stall in pump-turbines
,”
Mech. Syst. Signal Process.
48
,
162
(
2014
).
28.
A.
Rezghi
and
A.
Riasi
, “
Sensitivity analysis of transient flow of two parallel pump-turbines operating at runaway
,”
Renewable Energy
86
,
611
(
2016
).
29.
M.
Xiuli
,
P.
Giorgio
, and
Z.
Yuan
, “
Francis-type reversible turbine field investigation during fast closure of wicket gates
,”
J. Fluids Eng.
140
,
061103
(
2018
).
30.
F. R.
Menter
and
Y.
Egorov
, in
Direct Large-Eddy Simulation VI
, edited by
E.
Lamballais
,
R.
Friedrich
,
B.
Geurts
, and
O.
Métais
(
Springer
,
The Netherlands
,
2006
), pp.
687
694
.
31.
C.
Mende
,
W.
Weber
, and
U.
Seidel
, “
Progress in load prediction for speed-no-load operation in Francis turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
49
,
062017
(
2016
).
32.
M.
Younsi
,
A.
Djerrada
,
T.
Belamri
, and
F.
Menter
, “
Application of the SAS turbulence model to predict the unsteady flow field behaviour in a forward centrifugal fan
,”
Int. J. Comput. Fluid Dyn.
22
,
639
(
2008
).
33.
P.
Olivier
,
K.
Chisachi
, and
A.
François
, “
High-resolution LES of the rotating stall in a reduced scale model pump-turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
22
,
022018
(
2014
).
34.
O.
Pacot
,
C.
Kato
,
Y.
Guo
,
Y.
Yamade
, and
F.
Avellan
, “
Large eddy simulation of the rotating stall in a pump-turbine operated in pumping mode at a part-load condition
,”
J. Fluids Eng.
138
,
111102
(
2016
).
35.
C.
Trivedi
, “
Compressible large eddy simulation of a Francis turbine during speed-no-load: Rotor stator interaction and inception of a vortical flow
,”
J. Eng. Gas Turbines Power
140
,
112601
(
2018
).
36.
C.
Widmer
,
T.
Staubli
, and
N.
Ledergerber
, “
Unstable characteristics and rotating stall in turbine brake operation of pump-turbines
,”
J. Fluids Eng.
133
,
041101
(
2011
).
37.
J. L.
Xiao
,
E. Q.
Zhu
, and
G. D.
Wang
, “
Numerical simulation of emergency shutdown process of ring gate in hydraulic turbine runaway
,”
J. Fluids Eng.
134
,
124501
(
2012
).
38.
L. S.
Xia
,
Y. G.
Cheng
,
X. X.
Zhang
, and
J. D.
Yang
, “
Numerical analysis of rotating stall instabilities of a pump-turbine in pump mode
,”
IOP Conf. Ser.: Earth Environ. Sci.
22
,
032020
(
2014
).
39.
M.
Fortin
,
S.
Houde
, and
C.
Deschenes
, “
Validation of simulation strategies for the flow in a model propeller turbine during a runaway event
,”
IOP Conf. Ser.: Earth Environ. Sci.
22
,
032026
(
2014
).
40.
C.
Trivedi
,
M. J.
Cervantes
, and
O. G.
Dahlhaug
, “
Numerical techniques applied to hydraulic turbines: A perspective review
,”
Appl. Mech. Rev.
68
,
29
(
2016
).
41.
C.
Trivedi
, “
Investigations of compressible turbulent flow in a high head Francis turbine
,”
J. Fluids Eng.
140
,
011101
(
2018
).
42.
J.
Yan
,
J.
Koutnik
,
U.
Seidel
, and
B.
Huebner
, “
Compressible simulation of rotor-stator interaction in pump-turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
12
,
012008
(
2010
).
43.
IEC 60193, Hydraulic Turbines, Storage Pumps and Pump-Turbines: Model Acceptance Tests,
International Electrotechnical Commission
,
3, Rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
,
16 November, 1999
, p.
578
.
44.
J.
Yin
,
D.
Wang
,
L.
Wang
,
Y.
Wu
, and
X.
Wei
, “
Effects of water compressibility on the pressure fluctuation prediction in pump turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
15
,
062030
(
2012
).
45.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
, and
C. J.
Freitas
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
J. Fluids Eng.
130
,
4
(
2008
).
46.
I. B.
Celik
,
Z. N.
Cehreli
, and
I.
Yavuz
, “
Index of resolution quality for large eddy simulations
,”
J. Fluids Eng.
127
,
949
(
2005
).
47.
S. B.
Pope
, “
Ten questions concerning the large-eddy simulation of turbulent flows
,”
New J. Phys.
6
,
35
(
2004
).
48.
M.
Shur
,
P. R.
Spalart
,
M.
Strelets
, and
A.
Travin
, “
A rapid and accurate switch from RANS to LES in boundary layers using an overlap region
,”
Flow, Turbul. Combust.
86
,
179
(
2011
).
49.
C.
Mockett
,
M.
Fuchs
, and
F.
Thiele
, “
Progress in DES for wall-modelled LES of complex internal flows
,”
Comput. Fluids
65
,
44
(
2012
).
50.
A. A.
Gavrilov
,
A. V.
Sentyabov
,
A. A.
Dekterev
, and
K.
Hanjalić
, “
Vortical structures and pressure pulsations in draft tube of a Francis-99 turbine at part load: RANS and hybrid RANS/LES analysis
,”
Int. J. Heat Fluid Flow
63
,
158
(
2017
).
51.
N. V.
Nikitin
,
F.
Nicoud
,
B.
Wasistho
,
K. D.
Squires
, and
P. R.
Spalart
, “
An approach to wall modeling in large-eddy simulations
,”
Phys. Fluids
12
,
1629
(
2000
).
52.
E.
Garnier
,
N.
Adams
, and
P.
Sagaut
,
Large Eddy Simulation for Compressible Flows, First
(
Springer
,
The Netherlands
,
2009
).
53.
IEC 60193, Hydraulic Turbines, Storage Pumps and Pump-Turbines: Model Acceptance Tests,
International Electrotechnical Commission
,
3, Rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
,
16 November, 1999
, p.
569
.
54.
H.
Brekke
,
New Trends in Technologies: Devices, Computer, Communication and Industrial Systems
(
InTech
,
Rijeka, Croatia
,
2010
), pp.
217
232
.
55.
V.
Kolar
, “
Vortex identification: New requirements and limitations
,”
Int. J. Heat Fluid Flow
28
,
638
(
2007
).
56.
Y.
Dubief
and
F.
Delcayre
, “
On coherent-vortex identification in turbulence
,”
J. Turbul.
1
,
1
(
2000
).
You do not currently have access to this content.