We investigate the oscillatory convective instability in a liquid layer with a deformable free surface. We provide linear stability analysis within a non-Boussinesq approach as our aim is to examine the influence of deformability of the free surface on the Rayleigh–Bénard–Marangoni instability. Within this approach, fluid is assumed to be isothermally incompressible; the density variations are accounted for in the continuity equation and in the buoyancy and inertial terms of the momentum equations. The numerical results show significant differences in stability behavior as compared to results obtained using the Boussinesq approach. Moreover, a novel oscillatory mode of instability is revealed for the zero Marangoni number and zero gravity. This result could not be obtained within the framework of the conventional Boussinesq approximation. Thorough investigation of the novel oscillatory mode let us propose the mechanism of this mode. It is connected with the capillary wave that enforced with thermal expansion of fluid. Weakly nonlinear analysis shows that supercritical branching of standing rolls is possible.

1.
G. Z.
Gershuni
and
E. M.
Zhukhovitskii
,
Convective Instability of Incompressible Fluids
(
Keter
,
Jerusalem
,
1976
).
2.
M.
Takashima
, “
Surface tension driven instability in a horizontal liquid layer with a deformable free surface. II. Overstability
,”
J. Phys. Soc. Jpn.
50
,
2751
(
1981
).
3.
P. L.
García-Ybarra
and
M. G.
Velarde
, “
Oscillatory Marangoni–Bénard interfacial instability and capillary–gravity waves in single- and two-component liquid layers with or without Soret thermal diffusion
,”
Phys. Fluids
30
(
6
),
1649
1655
(
1987
).
4.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Dover Publications, Inc.
,
New York
,
1961
).
5.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
(
Cambridge University Press
,
Cambridge
,
1981
), p.
605
.
6.
D. V.
Lyubimov
,
T. P.
Lyubimova
,
J. I. D.
Alexander
, and
N. I.
Lobov
, “
On the Boussinesq approximation for fluid systems with deformable interfaces
,”
Adv. Space Res.
22
(
8
),
1159
(
1998
).
7.
D. V.
Lyubimov
,
T. P.
Lyubimova
,
J. I. D.
Alexander
, and
N. I.
Lobov
, “
Rayleigh–Benard–Marangoni convection in a weakly non-Boussinesq fluid layer with a deformable surface
,”
Phys. Fluids
30
,
024103
(
2018
).
8.
T.
Zacharia
,
A. H.
Eraslan
, and
K. K.
Aidun
, “
Modeling of non-autogenous welding
,”
Weld. J.
67
,
18s
(
1988
).
9.
X. Z.
Wu
and
A.
Libchaber
, “
Non-Boussinesq effects in free thermal convection
,”
Phys. Rev. A
43
,
2833
(
1991
).
10.
R. V.
Birikh
,
V. A.
Briskman
,
M. G.
Velarde
, and
J.-C.
Legros
,
Liquid Interfacial System: Oscillations and Instability
(
Dekker
,
New York, Basel
,
2003
).
11.
A. A.
Nepomnyashchy
,
M. G.
Velarde
, and
P.
Colinet
,
Interfacial Phenomena and Convection
(
Chapman and Hall/CRC
,
London/Boca Ration, FL
,
2001
).
12.
S.
Godunov
, “
On the numerical solution of boundary value problems for systems of linear ordinary differential equations
,”
Uspehi Mat. Nauk
16
,
171
(
1961
) (in Russian).
13.
S. D.
Conte
, “
The numerical solution of linear boundary value problems
,”
SIAM Rev.
8
,
309
(
1966
).
14.
C.
Perez-Garcia
and
G.
Carneiro
, “
Linear stability analysis of Benard-Marangoni convection in fluids with a deformable free surface
,”
Phys. Fluids A
3
,
292
(
1991
).
15.
A.
Rednikov
,
P.
Colinet
,
M.
Velarde
, and
J.
Legros
, “
Rayleigh–Marangoni oscillatory instability in a horizontal liquid layer heated from above: Coupling and mode mixing of internal and surface dilational waves
,”
J. Fluid Mech.
405
,
57
(
2000
).
16.
P. L.
Garcia-Ybarra
,
J. L.
Castillo
, and
M. G.
Velarde
, “
Bénard–Marangoni convection with a deformable interface and poorly conducting boundaries
,”
Phys. Fluids
30
,
2655
(
1987
).
17.
A. A.
Golovin
,
A. A.
Nepomnyashchy
, and
L. M.
Pismen
, “
Pattern formation in large-scale Marangoni convection with deformable interface
,”
Phys. D
81
,
117
(
1995
).
You do not currently have access to this content.