One falling liquid droplet impacting a sessile droplet and then undergoing oscillation is a common phenomenon in both nature and industry. However, to the best of our knowledge, the head-on collision of two nanofluid drops has not been studied when both the nanoparticle and surfactant exist in the drop. In this work, the characteristics of oscillation after head-on collision of two TiO2-water nanofluid drops were investigated experimentally. The effects of impact velocity, drop size, and nanoparticle concentration have been considered to understand how they influence the drop spreading, recoiling, and rebounding. For the influence of the drop size, it shows that in 0% and 0.001% of nanoparticle concentrations, the relative spreading radius of small drop size is higher than that with large size, while it is reversed in 0.01% and 0.1% of nanoparticle mass fractions. Interestingly, it was found that there is an optimal nanoparticle mass fraction of 0.1% for nanofluid droplets where the oscillation of head-on collision can be damped much more rapidly than that for nanoparticle-free droplets. A hypothesis considering the comprehensive interaction of surfactant redistribution, surfactant gradient, and particle initial effect was proposed to explain the observed phenomenon. This work will be of significant reference to various practical applications especially when the drop collision oscillation characteristics are supposed to be under control.

1.
J. D.
Mctaccart-Cowani
and
R.
List
, “
Collision and breakup of water drops at terminal
,”
J. Atmos. Sci.
32
,
1401
1411
(
1975
).
2.
R.
Gunn
, “
Collision characteristics of freely falling water drops
,”
Science
150
(
3697
),
695
701
(
1965
).
3.
J.
Quan
,
Q.
Zhang
,
H.
He
,
J.
Liu
,
M.
Huang
, and
H.
Jin
, “
Analysis of the formation of fog and haze in North China Plain (NCP)
,”
Atmos. Chem. Phys.
11
(
4
),
11911
11937
(
2011
).
4.
F.
Raes
and
R. V.
Dingenen
, “
Simulations of condensation and cloud condensation nuclei from biogenic SO2, in the remote marine boundary layer
,”
J. Geophys. Res.
97
(
D12
),
12901
12912
, https://doi.org/10.1029/92jd00961 (
1992
).
5.
S.
Pal
,
A. M.
Miqdad
,
S.
Datta
,
A. K.
Das
, and
P. K.
Das
, “
Control of drop impact and proposal of pseudo-superhydrophobicity using electrostatics
,”
Ind. Eng. Chem. Res.
56
(
39
),
11312
11319
(
2017
).
6.
Z. Y.
Zhang
,
Y. C.
Chi
,
L. J.
Shang
,
P.
Zhang
, and
Z. F.
Zhao
, “
On the role of droplet bouncing in modeling impinging sprays under elevated pressures
,”
Int. J. Heat Mass Transfer
102
,
657
668
(
2016
).
7.
H.
Gu
,
M. H. G.
Duits
, and
F.
Mugele
, “
Droplets formation and merging in two-phase flow microfluidics
,”
Int. J. Mol. Sci.
12
(
4
),
2572
2597
(
2011
).
8.
X.
Pu
,
G. X.
Li
,
Y.
Song
,
M. J.
Shang
, and
Y. H.
Su
, “
Droplet coalescence phenomena during liquid−liquid heterogeneous reactions in microreactors
,”
Ind. Eng. Chem. Res.
56
(
43
),
12316
12325
(
2017
).
9.
K.
Range
and
F.
Feuillebois
, “
Influence of surface roughness on liquid drop impact
,”
J. Colloid Interface Sci.
203
(
1
),
16
30
(
1998
).
10.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Time evolution of liquid drop impact onto solid, dry surfaces
,”
Exp. Fluids
33
(
1
),
112
124
(
2002
).
11.
M.
Pasandideh-Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
(
3
),
650
659
(
1996
).
12.
P.
Tsai
,
S.
Pacheco
,
C.
Pirat
,
L.
Lefferts
, and
D.
Lobse
, “
Drop impact upon micro- and nanostructured superhydrophobic surfaces
,”
Langmuir
25
(
20
),
12293
12298
(
2009
).
13.
C. W.
Visser
,
P. E.
Frommhold
,
S.
Wildeman
,
R.
Mettin
,
D.
Lohse
, and
C.
Sun
, “
Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns
,”
Soft Matter
11
(
9
),
1708
1722
(
2015
).
14.
F.
Boyer
,
E.
Sandoval-Nava
,
J. H.
Snoeijer
,
J. F.
Dijksman
, and
D.
Lohse
, “
Drop impact of shear thickening liquids
,”
Phys. Rev. Fluids
1
(
1
),
013901
(
2016
).
15.
M.
Kahani
,
R. G.
Jackson
, and
G.
Rosengarten
, “
Experimental investigation of TiO2/water nanofluid droplet impingement on nanostructured surfaces
,”
Ind. Eng. Chem. Res.
55
,
2230
2241
(
2016
).
16.
C.
Ukiwe
and
D. Y.
Kwok
, “
On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces
,”
Langmuir
21
(
2
),
666
673
(
2005
).
17.
M. N.
Hasan
,
A.
Chandy
, and
J. W.
Choi
, “
Numerical analysis of post-impact droplet deformation for direct-print
,”
Eng. Appl. Comput. Fluid Mech.
9
(
1
),
543
555
(
2015
).
18.
S. F.
Lunkad
,
V. V.
Buwa
, and
K. D. P.
Nigam
, “
Numerical simulations of drop impact and spreading on horizontal and inclined surfaces
,”
Chem. Eng. Sci.
62
(
24
),
7214
7224
(
2007
).
19.
J.
Philippi
,
P. Y.
Lagree
, and
A.
Antkowiak
, “
Drop impact on a solid surface: Short-time self-similarity
,”
J. Fluid Mech.
795
,
96
135
(
2016
).
20.
M.
Khalili
,
H.
Yahyazadeh
,
M.
Gorji-Bandpy
, and
D. D.
Ganjin
, “
Application of volume of fluid method for simulation of a droplet impacting a fiber
,”
Propul. Power Res.
5
(
2
),
123
133
(
2016
).
21.
K. A.
Raman
,
R. K.
Jaiman
,
T. S.
Lee
, and
H. T.
Low
, “
On the dynamics of crown structure in simultaneous two droplets impact onto stationary and moving liquid film
,”
Comput. Fluids
107
,
285
300
(
2015
).
22.
K. A.
Raman
,
R. K.
Jaiman
,
T. S.
Lee
, and
H. T.
Low
, “
Dynamics of simultaneously impinging drops on a dry surface: Role of impact velocity and air inertia
,”
J Colloid Interface Sci.
486
,
265
276
(
2017
).
23.
C.
Rabe
,
J.
Malet
, and
F.
Feuillebois
, “
Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number
,”
Phys. Fluids
22
(
4
),
047101
(
2015
).
24.
N.
Ashgriz
and
J. Y.
Poo
, “
Coalescence and separation in binary collisions of liquid drops
,”
J. Fluid Mech.
221
(
221
),
183
204
(
1990
).
25.
C.
Gotaas
,
P.
Havelka
,
H. A.
Jakobsen
, and
H. F.
Svendsen
, “
Effect of viscosity on droplet-droplet collision outcome: Experimental study and numerical comparison
,”
Phys. Fluids
19
(
10
),
102105
(
2007
).
26.
K. G.
Krishnan
and
E.
Loth
, “
Effects of gas and droplet characteristics on drop-drop collision outcome regimes
,”
Int. J. Multiphase Flow
77
,
171
186
(
2015
).
27.
S. U. S.
Choi
and
J. A.
Eastman
, “
Enhancing thermal conductivity of fluids with nano-particles
,”
ASME Fed.
231
(
1
),
99
105
(
1995
).
28.
Y. M.
Xuan
and
Q.
Li
, “
Heat transfer enhancement of nanofluids
,”
J. Eng. Thermophys.
21
(
1
),
58
64
(
2000
).
29.
V.
Vasu
,
K. R.
Krishna
, and
A. C. S.
Kumar
, “
Exploitation of thermal properties of fluids embedded with nanostructured materials
,”
Int. Ene. J.
8
,
181
190
(
2007
).
30.
O.
Salata
, “
Applications of nanoparticles in biology and medicine
,”
J. Nanobiotechnol.
2
(
1
),
3
(
2004
).
31.
S. M. S.
Murshed
,
S. H.
Tan
,
N. T.
Nguyen
,
N.
Teck
, and
Y.
Levent
, “
Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction
,”
Microfluid. Nanofluid.
6
(
2
),
253
259
(
2009
).
32.
G.
Duursma
,
K.
Sefiane
, and
A.
Kennedy
, “
Experimental studies of nanofluid droplets in spray cooling
,”
Heat Transfer Eng.
30
(
13
),
1108
1120
(
2009
).
33.
R. H.
Chen
,
T. X.
Phuoc
, and
D.
Martello
, “
Effects of nanoparticles on nanofluid droplet evaporation
,”
Int. J. Heat Mass Transfer
53
(
19
),
3677
3682
(
2010
).
34.
S.
Vafaei
,
A.
Purkayastha
,
A.
Jain
,
G.
Ramanath
, and
T.
Borca-Tasciuc
, “
The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids
,”
Nanotechnology
20
(
18
),
185702
(
2009
).
35.
S.
Tanvir
and
L.
Qiao
, “
Surface tension of nanofluid-type fuels containing suspended nanomaterials
,”
Nanoscale Res. Lett.
7
(
1
),
226
(
2012
).
36.
S.
Kumar
and
V. K.
Aswal
, “
Tuning of nanoparticle-surfactant interactions in aqueous system
,”
J. Phys.: Condens. Matter
23
(
3
),
035101
(
2011
).
37.
X. G.
Zhang
and
O. A.
Basaran
, “
Dynamic surface tension effects in impact of a drop with a solid surface
,”
J Colloid Interface Sci
187
(
1
),
166
178
(
1997
).
38.
H. S.
Chen
,
Y. L.
Ding
,
Y. R.
He
, and
C. Q.
Tan
, “
Rheological behavior of ethylene glycol based titania nanofluids
,”
Chem. Phys. Lett.
444
(
4
),
333
337
(
2007
).
39.
R. Y.
Hong
,
Z. Q.
Ren
,
Y. P.
Han
,
H. Z.
Li
,
Y.
Zheng
, and
J.
Ding
, “
Rheological properties of water-based Fe3O4 ferrofluids
,”
Chem. Eng. Sci.
62
(
21
),
5912
5924
(
2007
).
40.
P. W.
Longest
and
J. X.
Xi
, “
Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways
,”
Aerosol Sci. Technol.
41
(
4
),
380
397
(
2007
).
41.
O. A.
Basaran
and
D. W.
DePaoli
, “
Nonlinear oscillations of pendant drops
,”
Phys. Fluids
6
(
9
),
2923
2943
(
1994
).
42.
J. R.
Moffat
,
K.
Sefiane
, and
M. E.
Shanahan
, “
Effect of TiO2 nanoparticles on contact line stick-slip behavior of volatile drops
,”
J. Phys. Chem. B
113
(
26
),
8860
8866
(
2009
).
43.
B. L.
Scheller
and
D. W.
Bousfield
, “
Newtonian drop impact with a solid surface
,”
AIChE J.
41
(
6
),
1357
1367
(
1995
).
You do not currently have access to this content.