Low emission combustion is critically influenced by fuel-air mixing quality. In the case of liquid fuels, atomization of the injected liquid is a vital component. Compared to standard injector nozzles, a spatially oscillating jet, as produced by a fluidic oscillator, has shown superior performance. To better understand and control breakup mechanisms of turbulent oscillating two-phase jets, numerical investigations are conducted for a jet with liquid Reynolds number Rel = 8701 and liquid Weber number Wel = 4759. Simulations are performed using a volume of fluid method. No explicit turbulence modeling is incorporated, but numerical viscosity of the discretization acts as an implicit subgrid scale model. Octree discretization in space in combination with adaptive mesh refinement allows for high-resolution interface capturing while allowing for moderate usage of computational resources. Two grid resolutions and refinement criteria are used to investigate the influence of spatial resolution and resolved turbulence on jet breakup. Inlet boundary conditions for the two-phase simulations are obtained from preceding single-phase, unsteady Reynolds-averaged Navier-Stokes simulations of a fluidic oscillator. The highest grid resolution shows an accurate representation of surface-tension- and inertia-induced breakup mechanisms, and turbulence effects along the interface appear sufficiently resolved. Besides Kelvin-Helmholtz instabilities, Rayleigh-Taylor instabilities, induced from jet oscillation, are observed. Superposition of these characterizes jet degradation and leads to early breakup. For validation, data from preceding flow experiments of a fluidic oscillator are used to compare droplet sizes and spatial development of the jet. Good agreement is found for all relevant properties.

1.
D.
Bradley
, “
Combustion and the design of future engine fuels
,”
Proc. Inst. Mech. Eng., Part C
223
,
2751
2765
(
2009
).
2.
T.
Lieuwen
,
H.
Torres
,
C.
Johnson
,
B. T.
Zinn
 et al, “
A mechanism of combustion instability in lean premixed gas turbine combustors
,”
J. Eng. Gas Turbines Power
123
,
182
189
(
2001
).
3.
D.
Guyot
,
B.
Bobusch
,
C. O.
Paschereit
, and
S.
Raghu
, “
Active combustion control using a fluidic oscillator for asymmetric fuel flow modulation
,” in
44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
(
American Institute of Aeronautics and Astronautics
,
2008
), p.
4956
.
4.
B. C.
Bobusch
,
P.
Berndt
,
C. O.
Paschereit
, and
R.
Klein
, “
Investigation of fluidic devices for mixing enhancement for the shockless explosion combustion process
,” in
Active Flow and Combustion Control 2014
(
Springer
,
2015
), pp.
281
297
.
5.
E.
Phillips
and
I.
Wygnanski
, “
Use of sweeping jets during transient deployment of a control surface
,”
AIAA J.
51
,
819
828
(
2013
).
6.
R.
Seele
,
P.
Tewes
,
R.
Woszidlo
,
M. A.
McVeigh
,
N. J.
Lucas
, and
I. J.
Wygnanski
, “
Discrete sweeping jets as tools for improving the performance of the V-22
,”
J. Aircr.
46
,
2098
2106
(
2009
).
7.
B. C.
Bobusch
,
R.
Woszidlo
,
J. M.
Bergada
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
Experimental study of the internal flow structures inside a fluidic oscillator
,”
Exp. Fluids
54
,
1559
(
2013
).
8.
S.
Raghu
and
R. D.
Stouffer
, “
Low pressure, full coverage fluidic spray device
,” U.S. patent 5,860,603 (January 19,
1999
).
9.
O.
Krüger
,
B. C.
Bobusch
,
R.
Woszidlo
, and
C. O.
Paschereit
, “
Numerical modeling and validation of the flow in a fluidic oscillator
,” in
21st AIAA Computational Fluid Dynamics Conference
(
AIAA
,
2013
), p.
3087
.
10.
O.
Desjardins
and
V.
Moureau
, “
Methods for multiphase flows with high density ratio
,” in
Proceedings of the Summer Programm 2010
(
Center for Turbulent Research
,
2010
), pp.
313
322
.
11.
S. V.
Apte
,
M.
Gorokhovski
, and
P.
Moin
, “
LES of atomizing spray with stochastic modeling of secondary breakup
,”
Int. J. Multiphase Flow
29
,
1503
1522
(
2003
).
12.
F.
Dos Santos
and
L.
Le Moyne
, “
Spray atomization models in engine applications, from correlations to direct numerical simulations
,”
Oil Gas Sci. Technol. Rev. Inst. Fr. Pet. Energ. Nouv.
66
,
801
822
(
2011
).
13.
E.
De Villiers
,
A.
Gosman
, and
H.
Weller
, “
Large eddy simulation of primary diesel spray atomization
,” SAE Technical Paper 2004-01-0100,
2004
.
14.
G. M.
Bianchi
,
F.
Minelli
,
R.
Scardovelli
, and
S.
Zaleski
, “
3D large scale simulation of the high-speed liquid jet atomization
,” SAE Technical Paper 2007-01-0244,
2007
.
15.
T.
Ménard
,
S.
Tanguy
, and
A.
Berlemont
, “
Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet
,”
Int. J. Multiphase Flow
33
,
510
524
(
2007
).
16.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
,”
J. Comput. Phys.
186
,
652
665
(
2003
).
17.
J.
Shinjo
and
A.
Umemura
, “
Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation
,”
Int. J. Multiphase Flow
36
,
513
532
(
2010
).
18.
D.
Fuster
,
A.
Bagué
,
T.
Boeck
,
L.
Le Moyne
,
A.
Leboissetier
,
S.
Popinet
,
P.
Ray
,
R.
Scardovelli
, and
S.
Zaleski
, “
Simulation of primary atomization with an octree adaptive mesh refinement and VOF method
,”
Int. J. Multiphase Flow
35
,
550
565
(
2009
).
19.
G.
Agbaglah
,
S.
Delaux
,
D.
Fuster
,
J.
Hoepffner
,
C.
Josserand
,
S.
Popinet
,
P.
Ray
,
R.
Scardovelli
, and
S.
Zaleski
, “
Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method
,”
C. R. Mec.
339
,
194
207
(
2011
).
20.
G.
Tryggvason
,
R.
Scardovelli
, and
S.
Zaleski
,
Direct Numerical Simulations of Gas–Liquid Multiphase Flows
(
Cambridge University Press
,
2011
).
21.
J.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
22.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
5866
(
2009
).
23.
D. J. E.
Harvie
,
M. R.
Davidson
, and
M.
Rudman
, “
An analysis of parasitic current generation in volume of fluid simulations
,”
Appl. Math. Modell.
30
,
1056
1066
(
2006
).
24.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
25.
R.
DeBar
, “
Fundamentals of the KRAKEN code
,” Report UCIR-760,
Lawrence Livermore Laboratory
,
1974
.
26.
E.
Aulisa
,
S.
Manservisi
,
R.
Scardovelli
, and
S.
Zaleski
, “
Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry
,”
J. Comput. Phys.
225
,
2301
2319
(
2007
).
27.
R.
Scardovelli
and
S.
Zaleski
, “
Analytical relations connecting linear interfaces and volume fractions in rectangular grids
,”
J. Comput. Phys.
164
,
228
237
(
2000
).
28.
M. M.
Francois
,
S. J.
Cummins
,
E. D.
Dendy
,
D. B.
Kothe
,
J. M.
Sicilian
, and
M. W.
Williams
, “
A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework
,”
J. Comput. Phys.
213
,
141
173
(
2006
).
29.
M. D.
Torrey
,
L. D.
Cloutman
,
R. C.
Mjolsness
, and
C. W.
Hirt
, “
NASA-VOF2D: A computer program for incompressible flows with free surfaces
,” Technical Report LA-10612-MS,
Los Alamos National Laboratory
,
1985
.
30.
S. J.
Cummins
,
M. M.
Francois
, and
D. B.
Kothe
, “
Estimating curvature from volume fractions
,”
Comput. Struct.
83
,
425
434
(
2005
).
31.
U.
Piomelli
, “
Large-eddy simulation: Achievements and challenges
,”
Prog. Aerosp. Sci.
35
,
335
362
(
1999
).
32.
S.
Popinet
,
M.
Smith
, and
C.
Stevens
, “
Experimental and numerical study of the turbulence characteristics of airflow around a research vessel
,”
J. Atmos. Oceanic Technol.
21
,
1575
1589
(
2004
).
33.
M.
Gorokhovski
and
M.
Herrmann
, “
Modeling primary atomization
,”
Annu. Rev. Fluid Mech.
40
,
343
366
(
2008
).
34.
F.
Xiao
,
M.
Dianat
, and
J. J.
McGuirk
, “
LES of turbulent liquid jet primary breakup in turbulent coaxial air flow
,”
Int. J. Multiphase Flow
60
,
103
118
(
2014
).
35.
S.
Popinet
, “
Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries
,”
J. Comput. Phys.
190
,
572
600
(
2003
).
36.
E.
Lubarsky
,
D.
Shcherbik
,
O.
Bibik
,
Y.
Gopala
, and
B. T.
Zinn
, “
Fuel jet in cross flow-experimental study of spray characteristics
,” in
Advanced Fluid Dynamics
(
InTech
,
2012
).
37.
X.
Li
and
M. C.
Soteriou
, “
High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers
,”
Phys. Fluids
28
,
082101
(
2016
).
38.
P. K.
Wu
,
K. A.
Kirkendall
,
R. P.
Fuller
, and
A. S.
Nejad
, “
Breakup processes of liquid jets in subsonic crossflows
,”
J. Propul. Power
13
,
64
73
(
1997
).
39.
P.
Marmottant
and
E.
Villermaux
, “
On spray formation
,”
J. Fluid Mech.
498
,
73
111
(
2004
).
40.
D.
Jarrahbashi
and
W.
Sirignano
, “
Vorticity dynamics for transient high-pressure liquid injection
,”
Phys. Fluids
26
,
101304
(
2014
).
41.
M.
Jain
,
R. S.
Prakash
,
G.
Tomar
, and
R. V.
Ravikrishna
, “
Secondary breakup of a drop at moderate Weber numbers
,”
Proc. R. Soc. A
471
,
20140930
(
2015
).
42.
G.
Meier
,
A.
Klöpper
, and
G.
Grabitz
, “
The influence of kinematic waves on jet break down
,”
Exp. Fluids
12
,
173
180
(
1992
).
43.
P. K.
Wu
,
R. F.
Miranda
, and
G. M.
Faeth
, “
Effects of initial flow conditions on primary breakup of nonturbulent and turbulent round liquid jets
,”
Atomization Sprays
5
,
175
196
(
1995
).
44.
O.
Desjardins
and
H.
Pitsch
, “
Detailed numerical investigation of turbulent atomization of liquid jets
,”
Atomization Sprays
20
,
311
(
2010
).
45.
L. P.
Bernal
and
A.
Roshko
, “
Streamwise vortex structure in plane mixing layers
,”
J. Fluid Mech.
170
,
499
525
(
1986
).
46.
R. H.
Rangel
and
W. A.
Sirignano
, “
Nonlinear growth of Kelvin–Helmholtz instability: Effect of surface tension and density ratio
,”
Phys. Fluids
31
,
1845
1855
(
1988
).
47.
M.
Abid
and
M. E.
Brachet
, “
Numerical characterization of the dynamics of vortex filaments in round jets
,”
Phys. Fluids A
5
,
2582
2584
(
1993
).
48.
B.
Cabral
and
L. C.
Leedom
, “
Imaging vector fields using line integral convolution
,” in
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques
(
ACM
,
1993
), pp.
263
270
.
49.
J.
Sauter
,
Die Grössenbestimmung der im Gemischnebel Von Verbrennungskraftmaschinen Vohrhandenen Brennstoffteilchen: (Mitteilung aus dem Laboratorium für Technische Physik der Technischen Hochschule München)
(
VDI-Verlag
,
1926
).
50.
H.
Simmons
, “
The correlation of drop-size distributions in fuel nozzle sprays—Part I: The drop-size/volume-fraction distribution
,”
J. Eng. Power
99
,
309
314
(
1977
).
51.
H.
Hiroyasu
and
T.
Kadota
, “
Fuel droplet size distribution in diesel combustion chamber
,” SAE Technical Paper 740715,
1974
.
52.
B.
Jähne
,
Digitale Bildverarbeitung
(
Springer-Verlag
,
2013
).
53.
R. M.
Haralick
and
L. G.
Shapiro
,
Computer and Robot Vision
(
Addison-Wesley
,
1992
).
54.
P.
Soille
and
C.
Gratin
, “
An efficient algorithm for drainage network extraction on DEMs
,”
J. Visual Commun. Image Representation
5
,
181
189
(
1994
).
55.
G. M.
Morton
,
A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing
(
International Business Machines Company
,
New York
,
1966
).
You do not currently have access to this content.