An analysis of the spectral turbulent kinetic energy budget in a fully developed turbulent plane channel flow is performed. Direct numerical simulation data are evaluated at friction Reynolds numbers Reτ of 180 and 1000. The analysis is focused on the influence of the Reynolds number on the spectral cascade of energy and the corresponding energy cascade in physical space in the presence of inhomogeneity and anisotropy. The turbulent kinetic energy distribution is compared for both Reynolds numbers, and the relevant characteristics of the energy transfer process in a wall-bounded turbulent flow are described. Differences in energy cascade are noted between the Reynolds number at both low and high wavenumbers. The results of the analysis are further assessed with a comparison to an earlier study of spectral energy transfer at Reτ = 180.

1.
Bolotnov
, Jr.,
I. A.
,
Lahey
,
R. T.
,
Drew
,
D. A.
, and
Jansen
,
K. E.
, “
Turbulent cascade modeling of single and bubbly two-phase turbulent flows
,”
Int. J. Multiphase Flow
34
,
1142
1151
(
2008
).
2.
Bolotnov
,
I. A.
,
Lahey
, Jr.,
R. T.
,
Drew
,
D. A.
,
Jansen
,
K. E.
, and
Oberai
,
A. A.
, “
Spectral analysis of turbulence based on the DNS of a channel flow
,”
Comput. Fluids
,
39
(
4
),
640
655
(
2010
).
3.
Chaouat
,
B.
and
Schiestel
,
R.
, “
A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows
,”
Phys. Fluids
17
,
065106
(
2005
).
4.
Cimarelli
,
A.
and
De Angelis
,
E.
, “
The physics of energy transfer toward improved subgrid-scale models
,”
Phys. Fluids
26
(
5
),
055103
(
2014
).
5.
Cimarelli
,
A.
,
De Angelis
,
E.
, and
Casciola
,
C.
, “
Paths of energy in turbulent channel flows
,”
J. Fluid Mech.
715
,
436
451
(
2013
).
6.
Comte-Bellot
,
G.
and
Corrsin
,
S.
, “
The use of a contraction to improve the isotropy of grid-generated turbulence
,”
J. Fluid Mech.
25
,
657
(
1966
).
7.
Del Álamo
,
J. C.
and
Jiménez
,
J.
, “
Spectra of the very large anisotropic scales in turbulent channels
,”
Phys. Fluids
15
(
6
),
L41
(
2003
).
8.
Del Álamo
,
J. C.
,
Jiménez
,
J.
,
Zandonade
,
P.
, and
Moser
,
R. D.
, “
Scaling of the energy spectra of turbulent channels
,”
J. Fluid Mech.
500
,
135
144
(
2004
).
9.
Domaradzki
,
J. A.
and
Rogallo
,
R. S.
, “
Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence
,”
Phys. Fluids
2
(
3
),
413
426
(
1990
).
10.
Dunn
,
D. C.
and
Morrison
,
J. F.
, “
Analysis of the energy budget in turbulent channel flow using orthogonal wavelets
,”
Comput. Fluids
34
,
199
(
2005
).
11.
George
,
W. K.
, “
The decay of homogeneous isotropic turbulence
,”
Phys. Fluids A
4
,
1492
(
1992
).
12.
Gualtieri
,
P.
,
Casciola
,
C. M.
,
Benzi
,
R.
, and
Piva
,
R.
, “
Preservation of statistical properties in large-eddy simulation of shear turbulence
,”
J. Fluid Mech.
592
,
471
494
(
2007
).
13.
Hill
,
R. J.
, “
Equations relating structure functions of all orders
,”
J. Fluid Mech.
434
,
379
388
(
2001
).
14.
Hill
,
R. J.
, “
Exact second-order structure-function relationship
,”
J. Fluid Mech.
468
,
317
326
(
2002
).
15.
Hoyas
,
S.
and
Jiménez
,
J.
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
(
1
),
011702
(
2006
).
16.
Jiménez
,
J.
, “
The physics of wall turbulence
,”
Phys. A
263
,
252
262
(
1999
).
17.
Kolmogorov
,
A.
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
30
(
1890
),
301
305
(
1941
).
18.
Marati
,
N.
,
Casciola
,
C.
, and
Piva
,
R.
, “
Energy cascade and spatial fluxes in wall turbulence
,”
J. Fluid Mech.
521
,
191
215
(
2004
).
19.
Moin
,
P.
and
Mahesh
,
K.
, “
Direct numerical simulation: A tool in turbulent research
,”
Annu. Rev. Fluid Mech.
30
,
539
578
(
1998
).
20.
Mollicone
,
J.-P.
,
Battista
,
F.
,
Gualtieri
,
P.
, and
Casciola
,
C. M.
, “
Effect of geometry and Reynolds number on the turbulent separated flow behind a bulge in a channel
,”
J. Fluid Mech.
823
,
100
133
(
2017
).
21.
Mollicone
,
J.-P.
,
Battista
,
F.
,
Gualtieri
,
P.
, and
Casciola
,
C. M.
, “
Turbulence dynamics in separated flows: The generalised Kolmogorov equation for inhomogeneous anisotropic conditions
,”
J. Fluid Mech.
841
,
1012
1039
(
2018
).
22.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
945
(
1999
).
23.
Oliver
,
T. A.
,
Malaya
,
N.
,
Ulerich
,
R.
, and
Moser
,
R. D.
, “
Estimating uncertainties in statistical category computed from direct numerical simulation
,”
Phys. Fluids
26
,
035101
(
2014
).
24.
Piomelli
,
U.
,
Cabot
,
W. H.
,
Moin
,
P.
, and
Lee
,
S.
, “
Subgrid-scale backscatter in turbulent and transitional flows
,”
Phys. Fluids A
3
(
7
),
1766
(
1991
).
25.
Piomelli
,
U.
,
Yu
,
Y.
, and
Adrian
,
R. J.
, “
Subgrid-scale energy transfer and near-wall turbulence structure
,”
Phys. Fluids
8
,
215
(
1996
).
26.
Pope
,
S. B.
, “
A more general effective-viscosity hypothesis
,”
J. Fluid Mech.
72
,
331
334
(
1975
).
27.
Pope
,
S. B.
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
28.
Richardson
,
L. F.
,
Weather Prediction by Numerical Process
(
Cambridge University Press
,
1922
).
29.
Sagaut
,
P.
, in
Large Eddy Simulation for Incompressible Flows: An Introduction
, Scientific Computation, edited by
Sagaut
,
P.
and
Meneveau
,
C.
(
Amazon.com: Books
,
2005
), ISBN: 9783540263449.
30.
Schiavo
,
L. A. C. A.
,
Wolf
,
W. R.
, and
Azevedo
,
J. L. F.
, “
Turbulent kinetic energy budgets in wall bounded flows with pressure gradients and separation
,”
Phys. Fluids
29
(
11
),
115108
(
2017
).
31.
Skrbek
,
L.
and
Stalp
,
S. R.
, “
On the decay of homogeneous isotropic turbulence
,”
Phys. Fluids
12
,
1997
(
2000
).
32.
Tennekes
,
H.
and
Lumley
,
J. L.
,
A First Course in Turbulence
(
The MIT Press
,
Cambridge, Massachusetts, London, England
,
1972
).
33.
Thais
,
L.
,
Tejada-Martnez
,
A. E.
,
Gatski
,
T. B.
, and
Mompean
,
G.
, “
A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow
,”
Comput. Fluids
43
(
1
),
134
142
(
2011
).
34.
Thais
,
L.
,
Mompean
,
G.
, and
Gatski
,
T. B.
, “
Spectral analysis of turbulent viscoelastic and Newtonian channel flows
,”
J. Non-Newtonian Fluid Mech.
200
,
165
176
(
2013
).
35.
Trofimova
,
A.
,
Tejada-Martinez
,
A. E.
,
Jansen
,
K. E.
, and
Lahey
, Jr.,
R. T.
, “
Direct numerical simulation of turbulent channel flows using a stabilized finite element method
,”
Comput. Fluids
,
38
(
4
),
924
938
(
2009
).
36.
Zhou
,
Y.
, “
Degrees of locality of energy transfer in the inertial range
,”
Phys. Fluids
5
(
5
),
1092
1094
(
1993a
).
37.
Zhou
,
Y.
, “
Interacting scales and energy transfer in isotropic turbulence
,”
Phys. Fluids
5
(
10
),
2511
2524
(
1993b
).
You do not currently have access to this content.