Microscopic analysis of turbulence topology in a regular porous medium is presented with a series of direct numerical simulation. The regular porous media are comprised of square cylinders in a staggered array. Triply periodic boundary conditions enable efficient investigations in a representative elementary volume. Three flow patterns—channel with sudden contraction, impinging surface, and wake—are observed and studied quantitatively in contrast to the qualitative experimental studies reported in the literature. Among these, shear layers in the channel show the highest turbulence intensity due to a favorable pressure gradient and shed due to an adverse pressure gradient downstream. The turbulent energy budget indicates a strong production rate after the flow contraction and a strong dissipation on both shear and impinging walls. Energy spectra and pre-multiplied spectra detect large scale energetic structures in the shear layer and a breakup of scales in the impinging layer. However, these large scale structures break into less energetic small structures at high Reynolds number conditions. This suggests an absence of coherent structures in densely packed porous media at high Reynolds numbers. Anisotropy analysis with a barycentric map shows that the turbulence in porous media is highly isotropic in the macro-scale, which is not the case in the micro-scale. In the end, proper orthogonal decomposition is employed to distinguish the energy-conserving structures. The results support the pore scale prevalence hypothesis. However, energetic coherent structures are observed in the case with sparsely packed porous media.

1.
H. P. G.
Darcy
,
Les fontaines publiques de la ville de Dijon. Exposition et application des principes à suivre et des formules à employer dans les questions de distribution dèau, etc
(
Victor Dalmont
,
1856
).
2.
A.
Dybbs
and
R. V.
Edwards
, “
A new look at porous media fluid mechanics—Darcy to turbulent
,” in
Fundamentals of Transport Phenomena in Porous Media
(
Springer
,
1984
), pp.
199
256
.
3.
M. H.
Pedras
and
M. J.
De Lemos
, “
Macroscopic turbulence modeling for incompressible flow through undeformable porous media
,”
Int. J. Heat Mass Transfer
44
,
1081
1093
(
2001
).
4.
N.
Horton
and
D.
Pokrajac
, “
Onset of turbulence in a regular porous medium: An experimental study
,”
Phys. Fluids
21
,
045104
(
2009
).
5.
D.
Seguin
,
A.
Montillet
, and
J.
Comiti
, “
Experimental characterisation of flow regimes in various porous media—I: Limit of laminar flow regime
,”
Chem. Eng. Sci.
53
,
3751
3761
(
1998
).
6.
D.
Seguin
,
A.
Montillet
,
J.
Comiti
, and
F.
Huet
, “
Experimental characterization of flow regimes in various porous media—II: Transition to turbulent regime
,”
Chem. Eng. Sci.
53
,
3897
3909
(
1998
).
7.
V. A.
Patil
and
J. A.
Liburdy
, “
Turbulent flow characteristics in a randomly packed porous bed based on particle image velocimetry measurements
,”
Phys. Fluids
25
,
043304
(
2013
).
8.
V. A.
Patil
and
J. A.
Liburdy
, “
Flow structures and their contribution to turbulent dispersion in a randomly packed porous bed based on particle image velocimetry measurements
,”
Phys. Fluids
25
,
113303
(
2013
).
9.
V. A.
Patil
and
J. A.
Liburdy
, “
Scale estimation for turbulent flows in porous media
,”
Chem. Eng. Sci.
123
,
231
235
(
2015
).
10.
D.
Hlushkou
and
U.
Tallarek
, “
Transition from creeping via viscous-inertial to turbulent flow in fixed beds
,”
J. Chromatogr. A
1126
,
70
85
(
2006
).
11.
R. J.
Hill
and
D. L.
Koch
, “
The transition from steady to weakly turbulent flow in a close-packed ordered array of spheres
,”
J. Fluid Mech.
465
,
59
97
(
2002
).
12.
Y.
Jin
,
M.-F.
Uth
,
A. V.
Kuznetsov
, and
H.
Herwig
, “
Numerical investigation of the possibility of macroscopic turbulence in porous media: A direct numerical simulation study
,”
J. Fluid Mech.
766
,
76
103
(
2015
).
13.
M.-F.
Uth
,
Y.
Jin
,
A. V.
Kuznetsov
, and
H.
Herwig
, “
A direct numerical simulation study on the possibility of macroscopic turbulence in porous media: Effects of different solid matrix geometries, solid boundaries, and two porosity scales
,”
Phys. Fluids
28
,
065101
(
2016
).
14.
Y.
Jin
and
A. V.
Kuznetsov
, “
Turbulence modeling for flows in wall bounded porous media: An analysis based on direct numerical simulations
,”
Phys. Fluids
29
,
045102
(
2017
).
15.
D. L.
Penha
,
S.
Stolz
,
J.
Kuerten
,
M.
Nordlund
,
A.
Kuczaj
, and
B.
Geurts
, “
Fully-developed conjugate heat transfer in porous media with uniform heating
,”
Int. J. Heat Fluid Flow
38
,
94
106
(
2012
).
16.
F.
Kuwahara
,
T.
Yamane
, and
A.
Nakayama
, “
Large eddy simulation of turbulent flow in porous media
,”
Int. Commun. Heat Mass Transfer
33
,
411
418
(
2006
).
17.
K.
Suga
, “
Understanding and modelling turbulence over and inside porous media
,”
Flow, Turbul. Combust.
96
,
717
756
(
2016
).
18.
P.
Kundu
,
V.
Kumar
, and
I. M.
Mishra
, “
Numerical modeling of turbulent flow through isotropic porous media
,”
Int. J. Heat Mass Transfer
75
,
40
57
(
2014
).
19.
W.
Breugem
and
B.
Boersma
, “
Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach
,”
Phys. Fluids
17
,
025103
(
2005
).
20.
G.
Yang
,
B.
Weigand
,
A.
Terzis
,
K.
Weishaupt
, and
R.
Helmig
, “
Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures
,”
Transp. Porous Media
122
,
145
167
(
2018
).
21.
D. A.
Nield
and
A.
Bejan
, “
Mechanics of fluid flow through a porous medium
,” in
Convection in Porous Media
(
Springer
,
2017
), pp.
1
35
.
22.
M.
De Paoli
,
F.
Zonta
, and
A.
Soldati
, “
Dissolution in anisotropic porous media: Modelling convection regimes from onset to shutdown
,”
Phys. Fluids
29
,
026601
(
2017
).
23.
R. I.
Issa
, “
Solution of the implicitly discretised fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
,
40
65
(
1986
).
24.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,”
Atmos. Turbul. Radio Wave Propag.
790
,
166
178
(
1967
).
25.
K. S.
Choi
and
J. L.
Lumley
, “
The return to isotropy of homogeneous turbulence
,”
J. Fluid Mech.
436
,
59
84
(
2001
).
26.
M.
Emory
and
G.
Iaccarino
, “
Visualizing turbulence anisotropy in the spatial domain with componentality contours
,”
Center for Turbulence Research Annual Research Briefs
(
Center for Turbulence Research
,
2014
), pp.
123
138
.
27.
S.
Banerjee
,
R.
Krahl
,
F.
Durst
, and
C.
Zenger
, “
Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches
,”
J. Turbul.
8
,
N32
(
2007
).
28.
L. H.
Hellström
and
A. J.
Smits
, “
The energetic motions in turbulent pipe flow
,”
Phys. Fluids
26
,
125102
(
2014
).
29.
J.
Baltzer
,
R.
Adrian
, and
X.
Wu
, “
Structural organization of large and very large scales in turbulent pipe flow simulation
,”
J. Fluid Mech.
720
,
236
279
(
2013
).
30.
K. E.
Meyer
,
J. M.
Pedersen
, and
O.
Özcan
, “
A turbulent jet in crossflow analysed with proper orthogonal decomposition
,”
J. Fluid Mech.
583
,
199
227
(
2007
).
31.
P.
Holmes
,
J. L.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
1998
).
32.
B. R.
Noack
,
M.
Morzynski
, and
G.
Tadmor
,
Reduced-Order Modelling for Flow Control
(
Springer Science & Business Media
,
2011
), Vol. 528.
33.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I. Coherent structures
,”
Q. Appl. Math.
45
,
561
571
(
1987
).
You do not currently have access to this content.