Understanding laminar submerged jet flight is important to many transport processes, although existing theory is insufficient within the most relevant near-nozzle region defined by the effective distance x′/(D·Re) < 0.05. A linearized convection diffusion momentum equation is employed to derive an approximate flow description within the jet core, for all archetypal issuing profiles. This is validated in the core region near the nozzle by numerical simulations and experimental measurements, and it provides novel insights and adaptation of the far-field (self-similar) Schlichting jet solution. It is employed here to reveal the detailed contour of each profile’s potential core and allows its differentiation from a new “boundary core” concept—the region unaffected by the change of the jet-edge shear transition from pipe flow to free-jet. This new concept reveals the minimal distance at which self-similarity can begin to exist, thereby analytically determining the virtual origin required to bring the existing far-field solution nearest to the nozzle. Thus, profile evolution and jet width become predictable within the near-nozzle region for all issuing profiles. As an alternative to the lengthy full prediction, current analysis also facilitates analytical rederivation of physically based parameters for two existing correlations describing the full uniform profile evolution and the centerline velocity decay for all other issuing profiles.

1.
Agostini
,
B.
 et al., “
State of the art of high heat flux cooling technologies
,”
Heat Transfer Eng.
28
(
4
),
258
81
(
2007
).
2.
Akaike
,
S.
and
Nemoto
,
M.
, “
Potential core of a submerged laminar jet
,”
J. Fluids Eng.
110
,
392
(
1988
).
3.
Allan
,
D.
,
Caswell
,
T.
,
Keim
,
N.
, and
van der Wel
,
C.
, “
Trackpy: Trackpy v0. 2.4
,”
2015
, https://github.Com/soft-matter/trackpy/tree/v03.
4.
Andrade
,
E. N. C.
and
Tsien
,
L. C.
, “
The velocity-distribution in a liquid-into-liquid jet
,”
Proc. Phys. Soc.
49
(
4
),
381
391
(
1937
).
5.
Angioletti
,
M.
,
Di Tommaso
,
R. M.
,
Nino
,
E.
, and
Ruocco
,
G.
, “
Simultaneous visualization of flow field and evaluation of local heat transfer by transitional impinging jets
,”
Int. J. Heat Mass Transfer
46
(
10
),
1703
13
(
2003
).
6.
Atabek
,
B. H.
, Ph.D. thesis,
University of Minnesota
,
Minneapolis
,
1961
, Retrieved (Dissertation Abstracts International, Vol. 22–06).
7.
Cabaleiro
,
J. M.
,
Laborde
,
C.
, and
Artana
,
G.
, “
Interaction between a laminar starting immersed micro-jet and a parallel wall
,”
Phys. Fluids
27
(
1
),
013601
(
2015
).
8.
Carlomagno
,
G. M.
and
Ianiro
,
A.
, “
Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: A review
,”
Exp. Therm. Fluid Sci.
58
,
15
35
(
2014
).
9.
Carslaw
,
H. S.
and
Jaeger
,
J. C.
,
Conduction of Heat in Solids
, 2nd ed. (
Oxford University Press, Amen House
,
London
,
1959
).
10.
Chung
,
Y. M.
,
Luo
,
K. H.
, and
Sandham
,
N. D.
, “
Numerical study of momentum and heat transfer in unsteady impinging jets
,”
Int. J. Heat Fluid Flow
23
(
5
),
592
600
(
2002
).
11.
Cummings
,
E. B.
, “
An image processing and optimal nonlinear filtering technique for particle image velocimetry of microflows
,”
Exp. Fluids
29
(
7
),
S042
S050
(
2000
).
12.
Davies
,
J. M.
,
Hutton
,
J. F.
, and
Walters
,
K.
, “
A critical re-appraisal of the jet-thrust technique for normal stresses, with particular reference to axial velocity and stress rearrangement at the exit plane
,”
J. Non-Newtonian Fluid Mech.
3
(
2
),
141
160
(
1977
).
13.
Donaldson
,
C. D.
and
Snedeker
,
R. S.
, “
A study of free jet impingement. Part 1. Mean properties of free and impinging jets
,”
J. Fluid Mech.
45
(
2
),
281
319
(
1971
).
14.
Duda
,
J. L.
and
Vrentas
,
J. S.
, “
Fluid mechanics of laminar liquid jets
,”
Chem. Eng. Sci.
22
(
6
),
855
869
(
1967
).
15.
Gear
,
R. L.
, “
The shape of low Reynolds number jets
,”
Phys. Fluids
26
(
1
),
7
(
1983
).
16.
Glauert
,
M. B.
, “
The wall jet
,”
J. Fluid Mech.
1
(
6
),
625
643
(
1956
).
17.
Grandchamp
,
X.
,
Fujiso
,
Y.
,
Wu
,
B.
, and
Van Hirtum
,
A.
, “
Steady laminar axisymmetrical nozzle flow at moderate Reynolds numbers: Modeling and experiment
,”
J. Fluids Eng.
134
(
1
),
011203
(
2012
).
18.
Greenshields
,
C.
and
Weller
,
H.
, “
Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows
,”
Int. J. Numer. Methods Fluids
63
,
1
21
(
2010
).
19.
Haustein
,
H. D.
,
Harnik
,
R. S.
, and
Rohlfs
,
W.
, “
A simple hydrodynamic model of a laminar free-surface jet in horizontal or vertical flight
,”
Phys. Fluids
29
(
8
),
082105
(
2017
).
20.
Hennecke
,
D. K.
, “
Heat transfer by Hagen-Poiseuille flow in the thermal development region with axial conduction
,”
Wärme Stoffübertragung
1
(
3
),
177
184
(
1968
).
21.
Herczynski
,
A.
,
Weidman
,
P. D.
, and
Burde
,
G. I.
, “
Two-fluid jets and wakes
,”
Phys. Fluids
16
(
4
),
1037
1048
(
2004
).
22.
Incropera
,
F. P.
,
Bergman
,
T. L.
,
Lavine
,
A. S.
, and
DeWitt
,
D. P.
,
Fundamentals of Heat and Mass Transfer
, 7th ed. (
John Wiley and Sons
,
2011
), Retrieved (http://books.google.com/books?id=vvyIoXEywMoC&pgis=1).
23.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
, “
A review of heat transfer data for single circular jet impingement
,”
Int. J. Heat Fluid Flow
13
(
2
),
106
115
(
1992
).
24.
Kashi
,
B.
and
Haustein
,
D. H.
, “
Dependence of submerged jet heat transfer on nozzle length
,”
Int. J. Heat Mass Transfer
121
,
137
152
(
2018
).
25.
Kneer
,
R.
,
Haustein
,
H. D.
,
Ehrenpreis
,
C.
, and
Rohlfs
,
W.
, “
Flow structures and heat transfer in submerged and free laminar jets
,” in
Proceedings of the 15th International Heat Transfer Conference, IHTC-15
(
Begell House Publications
,
2014
), pp.
497
517
.
26.
Lee
,
D. S.
,
Kihm
,
K. D.
, and
Chung
,
S. H.
, “
Analytical solutions for the developing jet from a fully-developed laminar tube flow
,”
J. Fluids Eng.
119
(
3
),
716
(
1997
).
27.
Lienhard
,
J. H.
, “
Heat transfer by impingement of circular free-surface liquid jets
,” in
18th National and 7th ISHMT-ASME Heat and Mass Transfer Conference 16
,
2006
.
28.
Martin
,
H.
, “
Heat and mass transfer between impinging gas jets and solid surfaces
,”
Adv. Heat Transfer
13
,
1
60
(
1977
).
29.
O’Neill
,
P.
,
Soria
,
J.
, and
Honnery
,
D.
, “
The stability of low Reynolds number round jets
,”
Exp. Fluids
36
(
3
),
473
483
(
2004
).
30.
Olsen
,
M. G.
, “
Depth of correlation reduction due to out-of-plane shear in microscopic particle image velocimetry
,”
Meas. Sci. Technol.
21
(
10
),
105406
(
2010
).
31.
Or
,
C. M.
,
Lam
,
K. M.
, and
Liu
,
P.
, “
Potential core lengths of round jets in stagnant and moving environments
,”
J. Hydro-Environ. Res.
5
(
2
),
81
91
(
2011
).
32.
Rankin
,
G. W.
and
Sridhar
,
K.
, “
Developing region of laminar jets with parabolic exit velocity profiles
,”
J. Fluids Eng.
103
,
322
(
1981
).
33.
Revuelta
,
A.
,
Sánchez
,
A. L.
, and
Liñán
,
A.
, “
Confined axisymmetric laminar jets with large expansion ratios
,”
J. Fluid Mech.
456
,
319
352
(
2002a
).
34.
Revuelta
,
A.
,
Sánchez
,
A. L.
, and
Liñán
,
A.
, “
The virtual origin as a first-order correction for the far-field description of laminar Jets
,”
Phys. Fluids
14
(
6
),
1821
1824
(
2002b
).
35.
Revuelta
,
A.
,
Sánchez
,
A. L.
, and
Liñán
,
A.
, “
Confined swirling jets with large expansion ratios
,”
J. Fluid Mech.
508
(
508
),
89
98
(
2004
).
36.
Rohlfs
,
W.
 et al., “
Flow structures and heat transfer in submerged and free laminar jets
,” in
Proceedings of the 1st Thermal and Fluids Engineering Summer Conference, TFESC-1
(
Begell House Publications
,
2015
), pp.
1011
1020
.
37.
Rohlfs
,
W.
,
Ehrenpreis
,
C.
,
Haustein
,
H. D.
,
Garbrecht
,
O.
, and
Kneer
,
R.
, “
Influence of local flow acceleration on the heat transfer of submerged and free-surface jet impingement
,” in
Proceedings of the 15th International Heat Transfer Conference, IHTC-15
(
Begell House Publications
,
2014
), pp.
3179
3192
.
38.
Rohlfs
,
W.
,
Haustein
,
H. D.
,
Garbrecht
,
O.
, and
Kneer
,
R.
, “
Insights into the local heat transfer of a submerged impinging jet: Influence of local flow acceleration and vortex-wall interaction
,”
Int. J. Heat Mass Transfer
55
(
25–26
),
7728
7736
(
2012
).
39.
Rosa
,
P.
,
Karayiannis
,
T. G.
, and
Collins
,
M. W.
, “
Single-phase heat transfer in microchannels: The importance of scaling effects
,”
Appl. Therm. Eng.
29
(
17–18
),
3447
3468
(
2009
).
40.
Schlichting
,
H.
,
Boundary Layer Theory
, 7th ed. (
McGraw-Hill Book Company
,
1967
).
41.
Schmidt-Bleker
,
A.
,
Reuter
,
S.
, and
Weltmann
,
K. D.
, “
Non-dispersive path mapping approximation for the analysis of ambient species diffusion in laminar jets
,”
Phys. Fluids
26
(
8
),
083603
(
2014
).
42.
Tropea
,
C.
and
Yarin
,
A. L.
,
Handbook of Experimental Fluid Mechanics
(
Springer Science and Business Media
,
2007
).
43.
Uddin
,
M.
and
Pollard
,
A.
, “
Self-similarity of coflowing jets: The virtual origin
,”
Phys. Fluids
19
(
6
),
068103
(
2007
).
44.
Viskanta
,
R.
, “
Heat Transfer to impinging isothermal gas and flame Jets
,”
Exp. Therm. Fluid Sci.
6
,
111
134
(
1993
).
45.
Watson
,
E. J.
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
(
3
),
481
(
1964
).
46.
Webb
,
B. W.
and
Ma
,
C. F.
, “
Single-phase liquid jet impingement heat transfer
,”
Adv. Heat Transfer
26
,
105
217
(
1995
).
47.
Wilson
,
D. E.
, “
A similarity solution for the axisymmetric viscous-gravity jet
,”
Phys. Fluids
29
(
3
),
632
639
(
1986
).
48.
Zuckerman
,
N.
and
Lior
,
N.
, “
Jet impingement heat transfer: Physics, correlations, and numerical modeling
,”
Adv. Heat Transfer
39
(
C
),
565
631
(
2006
).
You do not currently have access to this content.