In this paper, we compare the autoignition characteristics of laminar, nitrogen-diluted hydrogen jets in two different oxidizer flow configurations: (a) co-flowing heated air and (b) wake of heated air, using two-dimensional numerical simulations coupled with detailed chemical kinetics. In both cases, autoignition is observed to initiate at locations with low scalar dissipation rates and high HO2 depletion rates. It is found that the induction stage prior to autoignition is primarily dominated by chemical kinetics and diffusion while the improved scalar mixing imparted by the large-scale flow structures controls the ignition progress in later stages. We further investigate the ignition transience and its connection with mixing by varying the initial wake conditions and fuel jet to oxidizer velocity ratios. These studies reveal that the autoignition delay times are independent of initial wake flow conditions. However, with increased jet velocity ratios, the later stages of ignition are accelerated, mainly due to enhanced mixing facilitated by the higher scalar dissipation rates. Furthermore, the sensitivity studies for the jet in wake configuration show a significant reduction in ignition delay even for about 0.14% (by volume) hydrogen dilution in the oxidizer. In addition, the detailed autoignition chemistry and the relative roles of certain radical species in the initiation of the autoignition process in these non-premixed jets are investigated by tracking the evolution of important chain reactions using a Lagrangian particle tracking approach. The reaction H2 + O2 ↔ HO2 + H is recognized to be the dominant chain initiation reaction that provides H radicals essential for the progress of subsequent elementary reactions during the pre-ignition stage.

1.
R.
Cabra
,
T.
Myhrvold
,
J.
Chen
,
R.
Dibble
,
A.
Karpetis
, and
R.
Barlow
, “
Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2-N2 jet flame in a vitiated coflow
,”
Proc. Combust. Inst.
29
,
1881
1888
(
2002
).
2.
R.
Hilbert
and
D.
Thévenin
, “
Autoignition of turbulent non-premixed flames investigated using direct numerical simulations
,”
Combust. Flame
128
,
22
37
(
2002
).
3.
R.
Cao
,
S.
Pope
, and
A.
Masri
, “
Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations
,”
Combust. Flame
142
,
438
453
(
2005
).
4.
E.
Hawkes
,
R.
Sankaran
,
J.
Sutherland
, and
J.
Chen
, “
Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics
,”
Proc. Combust. Inst.
31
,
1633
1640
(
2007
).
5.
See http://www.sandia.gov/TNF/abstract.html/ for more information on different types of jet flames,
1998–2016
.
6.
C.
Markides
and
E.
Mastorakos
, “
An experimental study of hydrogen autoignition in a turbulent co-flow of heated air
,”
Proc. Combust. Inst.
30
,
883
891
(
2005
).
7.
R.
Gordon
,
A.
Masri
, and
E.
Mastorakos
, “
Simultaneous Rayleigh temperature, OH-and CH2O-LIF imaging of methane jets in a vitiated coflow
,”
Combust. Flame
155
,
181
195
(
2008
).
8.
C.
Yoo
,
R.
Sankaran
, and
J.
Chen
, “
Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: Flame stabilization and structure
,”
J. Fluid Mech.
640
,
453
481
(
2009
).
9.
R.
Gordon
,
A.
Masri
,
S.
Pope
, and
G.
Goldin
, “
A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow
,”
Combust. Theory Modell.
11
,
351
376
(
2007
).
10.
W.
Jones
and
S.
Navarro-Martinez
, “
Large eddy simulation of autoignition with a subgrid probability density function method
,”
Combust. Flame
150
,
170
187
(
2007
).
11.
E.
Mastorakos
,
T.
Baritaud
, and
T.
Poinsot
, “
Numerical simulations of autoignition in turbulent mixing flows
,”
Combust. Flame
109
,
198
223
(
1997
).
12.
H.
Im
,
J.
Chen
, and
C.
Law
, “
Ignition of hydrogen-air mixing layer in turbulent flows
,”
Symp. (Int.) Combust.
27
,
1047
1056
(
1998
).
13.
S.
Cao
and
T.
Echekki
, “
Autoignition in nonhomogeneous mixtures: Conditional statistics and implications for modeling
,”
Combust. Flame
151
,
120
141
(
2007
).
14.
S.
Sreedhara
and
K.
Lakshmisha
, “
Direct numerical simulation of autoignition in a non-premixed, turbulent medium
,”
Proc. Combust. Inst.
28
,
25
33
(
2000
).
15.
S.
Sreedhara
and
K.
Lakshmisha
, “
Assessment of conditional moment closure models of turbulent autoignition using DNS data
,”
Proc. Combust. Inst.
29
,
2069
2077
(
2002
).
16.
S.
Mukhopadhyay
and
J.
Abraham
, “
Influence of turbulence on autoignition in stratified mixtures under compression ignition engine conditions
,”
Proc. Inst. Mech. Eng., Part D
227
,
748
760
(
2013
).
17.
A.
Masri
,
B.
Dally
,
R.
Barlow
, and
C.
Carter
, “
The structure of the recirculation zone of a bluff-body combustor
,”
Symp. (Int.) Combust.
25
,
1301
1308
(
1994
).
18.
A.
Masri
and
R.
Bilger
, “
Turbulent diffusion flames of hydrocarbon fuels stabilized on a bluff-body
,”
Symp. (Int.) Combust.
20
,
319
326
(
1985
).
19.
B.
Dally
,
A.
Masri
,
R.
Barlow
, and
G.
Fiechtner
, “
Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames
,”
Combust. Flame
114
,
119
148
(
1998
).
20.
S.
Chaudhuri
,
S.
Kostka
,
M. W.
Renfro
, and
B. M.
Cetegen
, “
Blowoff dynamics of bluff-body stabilized turbulent premixed flames
,”
Combust. Flame
157
,
790
802
(
2010
).
21.
S.
Chaudhuri
,
S.
Kostka
,
S. G.
Tuttle
,
M. W.
Renfro
, and
B. M.
Cetegen
, “
Blowoff mechanism of two dimensional bluff-body stabilized turbulent premixed flames in a prototypical combustor
,”
Combust. Flame
158
,
1358
1371
(
2011
).
22.
F.
Williams
, “
Detailed and reduced chemistry for hydrogen autoignition
,”
J. Loss Prev. Process Ind.
21
,
131
135
(
2008
).
23.
G.
Alamo
,
F.
Williams
, and
A.
Sanchez
, “
Hydrogen–oxygen induction times above crossover temperatures
,”
Combust. Sci. Technol.
176
,
1599
1626
(
2004
).
24.
T.
Echekki
and
J.
Chen
, “
Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures
,”
Combust. Flame
134
,
169
191
(
2003
).
25.
B.
Helenbrook
,
H.
Im
, and
C.
Law
, “
Theory of radical-induced ignition of counterflowing hydrogen versus oxygen at high temperatures
,”
Combust. Flame
112
,
242
252
(
1998
).
26.
S. P.
Karkach
and
V. I.
Osherov
, “
Ab initio analysis of the transition states on the lowest triplet H2O2 potential surface
,”
J. Chem. Phys.
110
,
11918
11927
(
1999
).
27.
A.
Tereza
,
V.
Smirnov
,
P.
Vlasov
,
A.
Lyubimov
,
I.
Sokolova
,
V.
Shumova
, and
V.
Ziborov
, “
Numerical simulation of the autoignition of hydrogen-air mixtures behind shock waves
,”
J. Phys.: Conf. Ser.
653
,
012059
(
2015
).
28.
S. S.
Patwardhan
and
K.
Lakshmisha
, “
Autoignition of turbulent hydrogen jet in a coflow of heated air
,”
Int. J. Hydrogen Energy
33
,
7265
7273
(
2008
).
29.
R.
Bolz
,
CRC Handbook of Tables for Applied Engineering Science
(
CRC Press
,
1973
).
30.
A.
Lutz
,
R.
Kee
, and
J.
Miller
, “
SENKIN: A FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis
,” Technical Report SAND-87-8248,
Sandia National Laboratories
,
Livermore, CA, USA
,
1988
.
31.
J.
Li
,
Z.
Zhao
,
A.
Kazakov
, and
F.
Dryer
, “
An updated comprehensive kinetic model of hydrogen combustion
,”
Int. J. Chem. Kinet.
36
,
566
575
(
2004
).
32.
R.
Bilger
, “
The structure of turbulent nonpremixed flames
,”
Symp. (Int.) Combust.
22
,
475
488
(
1989
).
33.
S.
Mukhopadhyay
and
J.
Abraham
, “
Influence of compositional stratification on autoignition in n-heptane/air mixtures
,”
Combust. Flame
158
,
1064
1075
(
2011
).
34.
See http://pencil-code.nordita.org/ for the Pencil code related source files,
2013
.
35.
N.
Babkovskaia
,
N.
Haugen
, and
A.
Brandenburg
, “
A high-order public domain code for direct numerical simulations of turbulent combustion
,”
J. Comput. Phys.
230
,
1
12
(
2011
).
36.
T.
Poinsot
and
S.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
37.
C.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
539
(
1996
).
38.
B.
Cantwell
and
D.
Coles
, “
An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder
,”
J. Fluid Mech.
136
,
321
374
(
1983
).
39.
M.
d’Olce
,
J.
Martin
,
N.
Rakotomalala
,
D.
Salin
, and
L.
Talon
, “
Pearl and mushroom instability patterns in two miscible fluids’ core annular flows
,”
Phys. Fluids
20
,
024104
(
2008
).
40.
H.
Pitsch
and
H.
Steiner
, “
Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion
,”
Proc. Combust. Inst.
28
,
41
49
(
2000
).
41.
N.
Peters
,
Turbulent Combustion
(
Cambridge University Press
,
2000
).
42.
E.
Mastorakos
, “
Ignition of turbulent non-premixed flames
,”
Prog. Energy Combust. Sci.
35
,
57
97
(
2009
).
43.
P.
Yeung
and
S.
Pope
, “
An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence
,”
J. Comput. Phys.
79
,
373
416
(
1988
).
44.
S.
Gottlieb
and
C.
Shu
, “
Total variation diminishing Runge-Kutta schemes
,”
Math. Comput. Am. Math. Soc.
67
,
73
85
(
1998
).
45.
C.
Law
,
Combustion Physics
(
Cambridge University Press
,
2010
).
You do not currently have access to this content.