A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e., rivulet structures) to modulated nonlinear wavetrain structures. Some of these structures have been observed experimentally; however, conditions under which they form are still not well understood. In this work, we examine profiles of nonlinear wave patterns formed by a thin liquid film falling on a uniformly heated horizontal plate. For this purpose, the Benney model is considered assuming a uniform temperature distribution along the film propagation on the horizontal surface. It is shown that for strong surface tension but a relatively small Biot number, spatially localized periodic-wave structures can be analytically obtained by solving the governing equation under appropriate conditions. In the regime of weak nonlinearity, a multiple-scale expansion combined with the reductive perturbation method leads to a complex Ginzburg-Landau equation: the solutions of which are modulated periodic pulse trains which amplitude and width and period are expressed in terms of characteristic parameters of the model.

1.
P. L.
Kapitza
, “
Wave flow of thin layers of a viscous fluid. Part I. Free flow
,”
Zh. Eksp. Teor. Fiz.
18
,
3
(
1948
).
2.
P. L.
Kapitza
and
S. P.
Kapitza
, “
Wave flow of thin layers of a viscous fluid: III. Experimental study of undulatory flow conditions
,”
Zh. Eksp. Teor. Fiz.
19
,
105
(
1949
).
3.
A. L.
Frenkel
, “
On evolution equations for thin films flowing down solid surfaces
,”
Phys. Fluids A
5
,
2342
(
1993
).
4.
H. C.
Chang
and
E. A.
Demekhin
,
Complex Wave Dynamics on Thin Films
(
Elsevier
,
Amsterdam
,
2002
).
5.
Y.
Trifonov
, “
Nonlinear waves on a liquid film falling down an inclined corrugated surface
,”
Phys. Fluids
29
,
054104
(
2017
).
6.
R. O.
Grigoriev
, “
Control of evaporatively driven instabilities of thin liquid films
,”
Phys. Fluids
14
,
1895
(
2002
).
7.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).
8.
B.
Scheid
,
C.
Ruyer-Quil
,
U.
Thiele
,
O. A.
Kabov
,
J. C.
Legros
, and
P.
Colinet
, “
Validity domain of the Benney equation including the Marangoni effect for closed and open flows
,”
J. Fluid Mech.
527
,
303
(
2005
).
9.
A.
Pereira
,
P. M. J.
Trevelyan
,
U.
Thiele
, and
S.
Kalliadasis
, “
Dynamics of a horizontal thin liquid film in the presence of reactive surfactants
,”
Phys. Fluids
19
,
112102
(
2007
).
10.
J.
Liu
and
J. P.
Gollub
, “
Solitary wave dynamics of film flows
,”
Phys. Fluids
6
,
1702
(
1994
).
11.
T. B.
Benjamin
, “
Wave formation in laminar flow down an inclined plane
,”
J. Fluid Mech.
2
,
554
(
1957
).
12.
T. B.
Benjamin
, “
Instability of periodic wavetrains in nonlinear dispersive systems [and discussion]
,”
Proc. R. Soc. A
299
,
59
(
1967
).
13.
D. J.
Benney
, “
Long waves on liquid films
,”
J. Math. Phys.
45
,
150
(
1966
).
14.
A.
Oron
and
P.
Rosenau
, “
Formation of patterns induced by thermocapillarity and gravity
,”
J. Phys. II
2
,
131
(
1992
).
15.
R. J.
Deissler
and
A.
Oron
, “
Stable localized patterns in thin liquid films
,”
Phys. Rev. Lett.
68
,
2948
(
1992
).
16.
A.
Oron
, “
Nonlinear dynamics of three-dimensional long-wave Marangoni instability in thin liquid films
,”
Phys. Fluids
12
,
1633
(
2000
).
17.
A.
Oron
and
P.
Rosenau
, “
On a nonlinear thermocapillary effect in thin liquid layers
,”
J. Fluid Mech.
273
,
361
(
1994
).
18.
K.
Kanatani
and
A.
Oron
, “
Nonlinear dynamics of confined thin liquid-vapor bilayer systems with phase change
,”
Phys. Fluids
23
,
032102
(
2011
).
19.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
20.
B.
Scheid
,
A.
Oron
,
P.
Colinet
,
U.
Thiele
, and
J. C.
Legros
, “
Nonlinear evolution of nonuniformly heated falling liquid films
,”
Phys. Fluids
14
,
4130
(
2002
).
21.
A.
Oron
and
O.
Gottlieb
, “
Nonlinear dynamics of temporally excited falling liquid films
,”
Phys. Fluids
14
,
2622
(
2002
).
22.
U.
Thiele
and
E.
Knobloch
, “
Thin liquid films on a slightly inclined heated wall
,”
Phys. D
190
,
213
(
2004
).
23.
H. E.
Huppert
, “
The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface
,”
J. Fluid Mech.
121
,
43
(
1982
).
24.
H. E.
Huppert
and
J. E.
Simpson
, “
The slumping of gravity currents
,”
J. Fluid Mech.
99
,
785
(
1980
).
25.
D. H.
Peregrine
, “
Long waves on a beach
,”
J. Fluid Mech.
27
,
815
(
1967
).
26.
V. A.
Galaktionov
, “
The formation of shocks and fundamental solution of a fourth-order quasilinear Boussinesq-type equation
,”
Nonlinearity
22
,
239
(
2008
).
27.
T.
Kawahara
, “
The derivative expansion method and nonlinear dispersive waves
,”
J. Phys. Soc. Jpn.
35
,
1537
(
1973
).
28.
R. A.
Cowley
, “
Structural phase transitions I. Landau theory
,”
Adv. Phys.
29
,
1
(
1980
).
29.
P. F.
Byrd
and
M. D.
Friedman
,
Handbook of Elliptic Integrals for Engineers and Physicists
(
Springer Verlag
,
Berlin
,
1954
).
30.
A. M.
Dikandé
, “
Fundamental modes of a trapped probe photon in optical fibers conveying periodic pulse trains
,”
Phys. Rev. A
81
,
013821
(
2010
).
31.
D.
Fandio Jubgang
, Jr.
,
A. M.
Dikandé
, and
A.
Sunda-Meya
, “
Elliptic solitons in optical fiber media
,”
Phys. Rev. A
92
,
053850
(
2015
).
32.
D.
Fandio Jubgang
, Jr.
and
A. M.
Dikandé
, “
Pulse train uniformity and nonlinear dynamics of soliton crystals in mode-locked fiber ring lasers
,”
J. Opt. Soc. Am. B
34
,
66
(
2017
).
33.
O. A.
Kabov
,
J. K.
Legros
,
I. V.
Marchuk
, and
B.
Sheid
, “
Deformation of the free surface in a moving locally-heated thin liquid layer
,”
Fluid Dyn.
36
,
521
(
2001
).
34.
O. A.
Kabova
,
B.
Scheid
,
I.
A. Sharina
, and
J. C.
Legros
, “
Heat transfer and rivulet structures formation in a falling thin liquid film locally heated
,”
Int. J. Therm. Sci.
41
,
664
(
2002
).
35.
D.
Holland
,
B. R.
Duffy
, and
S. K.
Wilson
, “
Thermocapillary effects on a thin rivulet draining down a heated or cooled substrate
,” in
IUTAM Symposium on Free Surface Flows
, Fluid Mechanics and Its Applications Vol. 62, edited by
A. C.
King
and
Y. D.
Shikhmurzaev
(
Springer
,
Dordrecht
,
2001
).
36.
N.
Tiwari
and
J. M.
Davis
, “
Stabilization of thin liquid films flowing over locally heated surfaces via substrate topography
,”
Phys. Fluids
22
,
042106
(
2010
).
37.
V. I.
Karpman
and
E. N.
Krushkal
, “
Modulated waves in nonlinear dispersive media
,”
Sov. Phys. JETP
28
,
277
(
1969
).
38.
F. D.
Tappert
and
C. M.
Varma
, “
Asymptotic theory of self-trapping of heat pulses in solids
,”
Phys. Rev. Lett.
25
,
1108
(
1970
).
39.
A.
Jeffrey
and
T.
Kakutani
, “
Weak nonlinear dispersive waves: A discussion centered around the Korteweg–De Vries equation
,”
SIAM Rev.
14
,
582
(
1972
).
40.
Y. C.
Kim
,
L.
Khadra
, and
E. J.
Powers
, “
Wave modulation in a nonlinear dispersive medium
,”
Phys. Fluids
23
,
2250
(
1980
).
41.
V. E.
Zakharov
and
L. A.
Ostrovsky
, “
Modulation instability: The beginning
,”
Phys. D
238
,
540
(
2009
).
42.
N. R.
Pereira
and
L.
Stenflo
, “
Nonlinear Schrödinger equation including growth and damping
,”
Phys. Fluids
20
,
1733
(
1977
).
43.
Yu. S.
Kivshar
and
B. A.
Malomed
, “
Dynamics of solitons in nearly integrable systems
,”
Rev. Mod. Phys.
61
,
763
(
1989
).
44.
M.
Baer
and
A.
Torcini
, in
Workshop Proceedings on the Complex Ginzburg-Landau Equation: Theoretical Analysis and Experimental Applications in the Dynamics of Extended Systems
[
Phys. D
174
,
1
220
(
2003
)].
45.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
, Springer Series in Synergetics (
Springer
,
Berlin
,
1984
).
46.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
).
47.
L. M.
Pismen
,
Vortices in Nonlinear Fields
(
Oxford Science Publications
,
1999
).
48.
T.
Bohr
,
M. H.
Jensen
,
G.
Paladin
, and
A.
Vulpiani
,
Dynamical Systems Approach to Turbulence
(
Cambridge University Press
,
1998
).
49.
I. S.
Aranson
and
L.
Kramer
, “
The world of the complex Ginzburg-Landau equation
,”
Rev. Mod. Phys.
74
,
99
(
2002
).
50.
H.
Chaté
, “
Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation
,”
Nonlinearity
7
,
185
(
1994
).
51.
A. V.
Porubov
and
M. G.
Velarde
, “
Exact periodic solutions of the complex Ginzburg-Landau equation
,”
J. Math. Phys.
40
,
884
(
1999
).
You do not currently have access to this content.