The heat generation/absorption and thermo-diffusion on an unsteady free convective MHD flow of radiating and chemically reactive second grade fluid near an infinite vertical plate through a porous medium and taking the Hall current into account have been studied. Assume that the bounding plate has a ramped temperature with a ramped surface concentration and isothermal temperature with a ramped surface concentration. The analytical solutions for the governing equations are obtained by making use of the Laplace transforms technique. The velocity, temperature, and concentration profiles are discussed through graphs. We also found that velocity, temperature, and concentration profiles in the case of ramped temperature with ramped surface concentrations are less than those of isothermal temperature with ramped surface concentrations. Also, the expressions of the skin friction, Nusselt number, and Sherwood number are obtained and represented computationally through a tabular form.

1.
G. G.
Stokes
, “
On the effect of the internal friction of fluids on the motion of pendulums
,”
Cambridge Philos. Trans.
9
,
8
106
(
1851
).
2.
V. J.
Rossow
, “
On Rayleigh’s problem in magnetohydrodynamics
,”
Phys. Fluids
3
(
3
),
395
398
(
1960
).
3.
B. C.
Sakiadis
, “
Boundary layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface
,”
AIChE J.
7
(
2
),
221
225
(
1961
).
4.
J. A. D.
Ackroyd
, “
On the laminar compressible boundary layer with stationary origin on a moving flat wall
,”
Math. Proc. Cambridge Philos. Soc.
63
,
871
888
(
1967
).
5.
T. D. M. A.
Samuel
and
I. M.
Hall
, “
On the series solution to the laminar boundary layer with stationary origin in a continuous moving porous surface
,”
Math. Proc. Cambridge Philos. Soc.
73
,
223
229
(
1973
).
6.
N. C.
Sacheti
and
B. S.
Bhatt
, “
Stokes and Rayleigh layers in the presence of naturally permeable boundaries
,”
J. Eng. Mech.
110
,
713
722
(
1984
).
7.
B. S.
Bhatt
and
N. C.
Sacheti
, “
Effect of rotation on Rayleigh layers in presence of naturally permeable boundaries
,”
J. Eng. Mech.
113
,
1795
1800
(
1987
).
8.
I.
Pop
, “
The effect of Hall currents on hydromagnetic flow near an accelerated plate
,”
J. Math. Phys. Sci.
5
,
375
379
(
1971
).
9.
T.
Watanabe
and
I.
Pop
, “
Hall effects on magnetohydrodynamic boundary layer flow over a continuous moving flat plate
,”
Acta Mech.
108
,
35
47
(
1995
).
10.
M.
Kinyanjui
,
J. K.
Kwanza
, and
S. M.
Uppal
, “
Magnetohydrodynamic free convection heat and mass transfer of a heat generating fluid past an impulsively started infinite vertical porous plate with Hall current and radiation absorption
,”
Energy Convers. Manage.
42
(
8
),
917
931
(
2001
).
11.
J.
Singh
,
S. K.
Gupta
, and
S.
Chandrasekaran
, “
Computational treatment of free convection effect on flow of elasticoviscous fluid past an accelerated plate with constant heat flux
,”
Appl. Math. Comput.
217
(
2
),
685
688
(
2010
).
12.
L.
Debnath
, “
Exact solutions of the unsteady hydrodynamic and hydro-magnetic boundary layer equations in a rotating fluid system
,”
Z. Angew. Math. Mech.
55
,
431
438
(
1975
).
13.
H. S.
Takhar
and
G.
Nath
, “
Unsteady flow over a stretching surface with a magnetic field in a rotating fluid
,”
Z. Angew. Math. Phys.
49
,
989
1001
(
1998
).
14.
H. S.
Takhar
,
A. J.
Chamkha
, and
G.
Nath
, “
MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and free stream velocity
,”
Int. J. Eng. Sci.
40
(
13
),
1511
1527
(
2002
).
15.
H. S.
Takhar
,
A. J.
Chamkha
, and
G.
Nath
, “
Flow and heat transfer on a stretching surface in a rotating fluid with a magnetic field
,”
Int. J. Therm. Sci.
42
(
1
),
23
31
(
2003
).
16.
R. K.
Deka
,
A. S.
Gupta
,
H. S.
Takhar
, and
V. M.
Soundalgekar
, “
Flow past an accelerated horizontal plate in a rotating fluid
,”
Acta Mech.
138
,
13
19
(
1999
).
17.
R. K.
Deka
, “
Hall effects on MHD flow past an accelerated plate
,”
Theor. Appl. Mech.
35
(
4
),
333
346
(
2008
).
18.
G.
Mandal
and
K. K.
Mandal
, “
Effect of Hall current on MHD Couette flow between thick arbitrarily conducting plate in a rotating system
,”
J. Phys. Soc. Jpn.
52
,
470
477
(
1983
).
19.
A. K.
Singh
,
N. C.
Sacheti
, and
P.
Chandran
, “
Transient effects in magneto-hydrodynamic Couette flow with rotation: Accelerated motion
,”
Int. J. Eng. Sci.
32
,
133
139
(
1994
).
20.
K. D.
Singh
, “
An oscillatory hydromagnetic Couette flow in a rotating system
,”
Z. Angew. Math. Mech.
80
,
429
432
(
2000
).
21.
S. K.
Ghosh
, “
Effects of Hall current on MHD Couette flow in a rotating system with arbitrary magnetic field
,”
Czech. J. Phys.
52
,
51
63
(
2002
).
22.
S. K.
Ghosh
,
O. A.
Beg
, and
M.
Narahari
, “
Hall effects on MHD flow in a rotating system with heat transfer characteristics
,”
Meccanica
44
,
741
765
(
2009
).
23.
G. S.
Seth
,
R.
Nandkeolyar
,
N.
Mahto
, and
S. K.
Singh
, “
MHD Couette flow in a rotating system in the presence of an inclined magnetic field
,”
Appl. Math. Sci.
3
(
59
),
2919
2932
(
2009
).
24.
M.
Guria
,
S.
Das
,
R. N.
Jana
, and
S. K.
Ghosh
, “
Oscillatory Couette flow in the presence of an inclined magnetic field
,”
Meccanica
44
,
555
564
(
2009
).
25.
G. W.
Sutton
and
A.
Sherman
,
Engineering Magnetohydrodynamics
(
McGraw-Hill
,
NY
,
1965
).
26.
D. V.
Krishna
,
D. R. V.
Prasada Rao
, and
A. S.
Ramachandra Murthy
, “
Hydromagnetic convection flow through a porous medium in a rotating channel
,”
J. Eng. Phys. Thermophys.
75
(
2
),
281
291
(
2002
).
27.
D. S.
Chauhan
and
P.
Rastogi
, “
Hall current and heat transfer effects on MHD flow in a channel partially filled with a porous medium in a rotating system
,”
Turk. J. Eng. Environ. Sci.
33
,
167
184
(
2009
).
28.
O. A.
Beg
,
L.
Sim
,
J.
Zueco
, and
R.
Bhargava
, “
Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence
,”
Commun. Nonlinear Sci. Numer. Simul.
15
,
345
359
(
2010
).
29.
D. S.
Chauhan
and
R.
Agrawal
, “
Effects of Hall current on MHD flow in a rotating channel partially filled with a porous medium
,”
Chem. Eng. Commun.
197
(
6
),
830
845
(
2010
).
30.
D. S.
Chauhan
and
R.
Agrawal
, “
Effects of Hall current on MHD Couette flow in a channel partially filled with a porous medium in a rotating system
,”
Meccanica
47
,
405
421
(
2012
).
31.
D. S.
Chauhan
and
P.
Rastogi
, “
Hall effects on MHD slip flow and heat transfer through a porous medium over an accelerated plate in a rotating system
,”
Int. J. Nonlinear Sci.
14
(
2
),
228
236
(
2012
).
32.
M.
VeeraKrishna
and
J.
Prakash
, “
Hall current effects on unsteady MHD flow in a rotating parallel plate channel bounded by porous bed on the lower Half—Darcy Lapwood model
,”
Open J. Fluid Dyn.
5
,
275
294
(
2015
).
33.
M.
VeeraKrishna
and
M.
Gangadhar Reddy
, “
MHD free convective rotating flow of visco-elastic fluid past an infinite vertical oscillating porous plate with chemical reaction
,”
IOP Conf. Ser.: Mater. Sci. Eng.
149
,
012217
(
2016
).
34.
M.
VeeraKrishna
and
G.
Subba Reddy
, “
Unsteady MHD convective flow of second grade fluid through a porous medium in a rotating parallel plate channel with temperature dependent source
,”
IOP Conf. Ser.: Mater. Sci. Eng.
149
,
012216
(
2016
).
35.
M.
VeeraKrishna
and
B. V.
Swarnalathamma
, “
Convective heat and mass transfer on MHD peristaltic flow of Williamson fluid with the effect of inclined magnetic field
,”
AIP Conf. Proc.
1728
,
020461
(
2016
).
36.
B. V.
Swarnalathamma
and
M.
Veera Krishna
, “
Peristaltic hemodynamic flow of couple stress fluid through a porous medium under the influence of magnetic field with slip effect
,”
AIP Conf. Proc.
1728
,
020603
(
2016
).
37.
G. S.
Seth
,
A. K.
Singha
, and
R.
Sharma
, “
MHD natural convection flow with Hall effects, radiation and heat absorption over an exponentially accelerated vertical plate with ramped temperature
,”
Ind. J. Sci. Res. Technol.
5
,
10
22
(
2015
).
38.
G. S.
Seth
,
S. M.
Hussain
, and
S.
Sarkar
, “
Hydromagnetic natural convection flow with heat and mass transfer of a chemically reacting and heat absorbing fluid past an accelerated moving vertical plate with ramped temperature and ramped surface concentration through a porous medium
,”
J. Egypt. Math. Soc.
23
,
197
207
(
2015
).
39.
S.
Samiulhaq
,
D.
Ahmad
,
I.
Vieru
, and
S.
Khan Shafie
, “
Unsteady magnetohydrodynamic free convection flow of a second grade fluid in a porous medium with ramped wall temperature
,”
PLoS One
9
(
5
),
e88766
(
2014
).
40.
S.
Rosseland
,
Astrophysik und Atom-Theoretische Grundlagen
(
Springer-Verlag
,
Berlin
,
1931
).
41.
M.
VeeraKrishna
and
M.
Gangadhar Reddy
, “
MHD free convective boundary layer flow through porous medium past a moving vertical plate with heat source and chemical reaction
,”
Mater. Today: Proc.
5
,
91
98
(
2018
).
42.
M.
VeeraKrishna
and
G.
Subba Reddy
, “
MHD forced convective flow of non-Newtonian fluid through stumpy permeable porous medium
,”
Mater. Today: Proc.
5
,
175
183
(
2018
).
43.
M.
VeeraKrishna
and
K.
Jyothi
, “
Hall effects on MHD rotating flow of a visco-elastic fluid through a porous medium over an infinite oscillating porous plate with heat source and chemical reaction
,”
Mater. Today: Proc.
5
,
367
380
(
2018
).
44.
B.
Siva Kumar Reddy
,
M.
VeeraKrishna
,
K. V. S. N.
Rao
, and
R.
Bhuvana Vijaya
, “
HAM solutions on MHD flow of nano-fluid through saturated porous medium with Hall effects
,”
Mater. Today: Proc.
5
,
120
131
(
2018
).
45.
H. R.
Kataria
and
H. R.
Patel
, “
Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium
,”
Alexandria Eng. J.
55
,
2125
2137
(
2016
).
46.
M. R.
Spiegel
,
Laplace Transforms
(
McGraw-Hill
,
New York
,
1965
).
You do not currently have access to this content.