We investigate experimentally the density-unstable displacement flow of two miscible fluids along an inclined pipe. This means that the flow is from the top to bottom of the pipe (downwards), with the more dense fluid above the less dense. Whereas past studies have focused on iso-viscous displacements, here we consider viscosity ratios in the range 1/10–10. Our focus is on displacements where the degree of transverse mixing is low-moderate, and thus a two-layer, stratified flow is observed. A wide range of parameters is covered in order to observe the resulting flow regimes and to understand the effect of the viscosity contrast. The inclination of the pipe (β) is varied from near horizontal β = 85° to near vertical β = 10°. At each angle, the flow rate and viscosity ratio are varied at fixed density contrast. Flow regimes are mapped in the (Fr, Re cos β/Fr)-plane, delineated in terms of interfacial instability, front dynamics, and front velocity. Amongst the many observations, we find that viscosifying the less dense fluid tends to significantly destabilize the flow. Different instabilities develop at the interface and in the wall-layers.

1.
J. O.
Shin
,
S. B.
Dalziel
, and
P. F.
Linden
, “
Gravity currents produced by lock exchange
,”
J. Fluid Mech.
521
,
1
34
(
2004
).
2.
Y.
Hallez
and
J.
Magnaudet
, “
A numerical investigation of horizontal viscous gravity currents
,”
J. Fluid Mech.
630
,
71
91
(
2009
).
3.
M.
Debacq
,
V.
Fanguet
,
J. P.
Hulin
,
D.
Salin
, and
B.
Perrin
, “
Self similar concentration profiles in buoyant mixing of miscible fluids in a vertical tube
,”
Phys. Fluids
13
,
3097
3100
(
2001
).
4.
M.
Debacq
,
J. P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E. J.
Hinch
, “
Buoyant mixing of miscible fluids of varying viscosities in vertical tube
,”
Phys. Fluids
15
,
3846
3855
(
2003
).
5.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E. J.
Hinch
, “
Buoyant mixing of miscible fluids in tilted tubes
,”
Phys. Fluids
16
,
L103
L106
(
2004
).
6.
T.
Seon
,
J.-P.
Hulin
,
D.
Salin
,
B.
Perrin
, and
E. J.
Hinch
, “
Buoyancy driven miscible front dynamics in tilted tubes
,”
Phys. Fluids
17
,
031702
(
2005
).
7.
T.
Seon
,
J.
Znaien
,
D.
Salin
,
J.-P.
Hulin
,
E. J.
Hinch
, and
B.
Perrin
, “
Front dynamics and macroscopic diffusion in buoyant mixing in a tilted tube
,”
Phys. Fluids
19
,
125105
(
2007
).
8.
J.
Znaien
,
F.
Moisy
, and
J.-P.
Hulin
, “
Flow structure and momentum transport for buoyancy driven mixing flows in long tubes at different tilt angles
,”
Phys. Fluids
23
,
035105
(
2011
).
9.
Y.
Hallez
and
J.
Magnaudet
, “
Effects of channel geometry on buoyancy-driven mixing
,”
Phys. Fluids
20
,
053306
(
2008
).
10.
Y.
Hallez
and
J.
Magnaudet
, “
Turbulence-induced secondary motion in a buoyancy-driven flow in a circular pipe
,”
Phys. Fluids
21
,
081704
(
2009
).
11.
T.
Seon
,
J.
Znaien
,
D.
Salin
,
J.-P.
Hulin
,
E. J.
Hinch
, and
B.
Perrin
, “
Transient buoyancy-driven front dynamics in nearly horizontal tubes
,”
Phys. Fluids
19
,
123603
(
2007
).
12.
E. B.
Nelson
and
D.
Guillot
,
Well Cementing
(
Schlumberger
,
2006
).
13.
S. M.
Taghavi
,
T.
Seon
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Influence of an imposed flow on the stability of a gravity current in a near horizontal duct
.”
Phys. Fluids
22
,
031702
(
2010
).
14.
S. M.
Taghavi
,
T.
Seon
,
K.
Wielage-Burchard
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Stationary residual layers in buoyant Newtonian displacement flows
.”
Phys. Fluids
23
,
044105
(
2011
).
15.
S. M.
Taghavi
,
K.
Alba
,
T.
Seon
,
K.
Wielage-Burchard
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Miscible displacement flows in near-horizontal ducts at low Atwood number
,”
J. Fluid Mech.
696
,
175
214
(
2012
).
16.
K.
Alba
,
S. M.
Taghavi
, and
I. A.
Frigaard
, “
Miscible density-unstable displacement flows in inclined tube
,”
Phys. Fluids
25
,
067101
(
2013
).
17.
S. M.
Taghavi
and
I. A.
Frigaard
, “
Estimation of mixing volumes in buoyant miscible displacement flows along near-horizontal pipes
,”
Can. J. Chem. Eng.
91
,
399
411
(
2013
).
18.
S. M.
Taghavi
,
T.
Seon
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Buoyancy-dominated displacement flows in near-horizontal channels: The viscous limit
.”
J. Fluid Mech.
639
,
1
35
(
2009
).
19.
K.
Alba
,
S. M.
Taghavi
, and
I. A.
Frigaard
, “
A weighted residual method for two-layer non-Newtonian channel flows: Steady-state results and their stability
,”
J. Fluid Mech.
731
,
509
544
(
2013
).
20.
A.
Etrati
and
I. A.
Frigaard
, “
A two-layer model for buoyant inertial displacement flows in inclined pipes
,”
Phys. Fluids
30
,
022107
(
2018
).
21.
M.
Moyers-Gonzalez
,
K.
Alba
,
S. M.
Taghavi
, and
I. A.
Frigaard
, “
A semi-analytical closure approximation for pipe flows of two Herschel–Bulkley fluids with a stratified interface
,”
J. Non-Newtonian Fluid Mech.
193
,
49
67
(
2013
).
22.
A. B.
Metzner
and
J. C.
Reed
, “
Flow of non-Newtonian fluids—Correlation of the laminar, transition, and turbulent flow regions
,”
AIChE J.
1
,
434
440
(
1955
).
23.
C.
Hartel
,
E.
Meiburg
, and
F.
Necker
, “
Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries
,”
J. Fluid Mech.
418
,
189
212
(
2000
).
You do not currently have access to this content.