An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at −24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

1.
M. R.
Bailey
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
S. G.
Kargl
, and
L. A.
Crum
, “
Physical mechanisms of the therapeutic effect of ultrasound (a review)
,”
Acoust. Phys.
49
(
4
),
369
388
(
2003
).
2.
M. R.
Bailey
,
J. A.
McAteer
,
Y. A.
Pishchalnikov
,
Y. A.
Hamilton
, and
T.
Colonius
, “
Progress in lithotripsy research
,”
Acoust. Today
2
,
18
29
(
2006
).
3.
T. G.
Leighton
and
R. O.
Cleveland
, “
Lithotripsy
,”
Proc. Inst. Mech. Eng., Part H
224
(
3
),
317
342
(
2010
).
4.
C. E.
Brennen
, “
Cavitation in medicine
,”
Interface Focus
5
,
20150022
(
2015
).
5.
W. W.
Roberts
,
T. L.
Hall
,
K.
Ives
,
J. S.
Wolf
, Jr.
,
J. B.
Fowlkes
, and
C. A.
Cain
, “
Pulsed cavitational ultrasound: Anoninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney
,”
J. Urol.
175
(
6
),
734
738
(
2006
).
6.
C. C.
Coussios
and
A. R.
Ronald
, “
Applications of acoustics and cavitation to noninvasive therapy and drug delivery
,”
Annu. Rev. Fluid Mech.
40
,
395
420
(
2008
).
7.
P.
Zhong
,
I.
Cioanta
,
S. L.
Zhu
,
F. H.
Cocks
, and
G. M.
Preminger
, “
Effects of tissue constraint on shock wave-induced bubble expansion in vivo
,”
J. Acoust. Soc. Am.
104
,
3126
3129
(
1998
).
8.
S.
Zhu
,
T.
Dreyerand
,
M.
Liebler
,
R.
Riedlinger
,
G. M.
Preminger
, and
P.
Zhong
, “
Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode
,”
Ultrasound Med. Biol.
30
,
675
682
(
2004
).
9.
E.
Herbert
,
S.
Balibar
, and
F.
Caupin
, “
Cavitation pressure in water
,”
Phys. Rev. E
74
,
041603
(
2006
).
10.
A. D.
Maxwell
,
T. Y.
Wang
,
C. A.
Cain
,
J. B.
Fowlkes
,
O. A.
Sapozhnikov
,
M. R.
Bailey
, and
Z.
Xu
, “
Cavitation clouds created by shock scattering from bubbles during histotripsy
,”
J. Acoust. Soc. Am.
130
,
1888
1898
(
2011
).
11.
A. D.
Maxwell
,
C. A.
Cain
,
T. L.
Hall
,
J. B.
Fowlkes
, and
Z.
Xu
, “
Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials
,”
Ultrasound Med. Biol.
39
,
449
465
(
2013
).
12.
E.
Vlaisavljevich
,
K. W.
Lin
,
A.
Maxwell
,
M.
Warnez
,
L.
Mancia
,
R.
Singh
,
A.
Putnam
,
J. B.
Fowlkes
,
E.
Johnsen
,
C.
Cain
, and
Z.
Xu
, “
Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation
,”
Ultrasound Med. Biol.
41
(
6
),
1651
1667
(
2015
).
13.
E.
Johnsen
and
T.
Colonius
, “
Shock-induced collapse of a gas bubble in shockwave lithotripsy
,”
J. Acoust. Soc. Am.
124
(
4
),
2011
2020
(
2008
).
14.
E.
Johnsen
and
T.
Colonius
, “
Numerical simulations of non-spherical bubble collapse
,”
J. Fluid Mech.
629
,
231
262
(
2009
).
15.
C. D.
Ohl
and
S. W.
Ohl
, “
Shock wave interaction with single bubbles and bubble clouds
,” in
Shock Wave Science and Technology Reference Library
(
Springer
,
2013
), Vol. 8.
16.
K.
Ando
,
A. Q.
Liu
, and
C. D.
Ohl
, “
Homogeneous nucleation in water in microfluidic channels
,”
Phys. Rev. Lett.
109
,
044501
(
2012
).
17.
P. A.
Quinto-Su
and
K.
Ando
, “
Nucleating bubble clouds with a pair of laser-induced shocks and bubbles
,”
J. Fluid Mech.
733
,
R3
(
2013
).
18.
S. A.
Goss
,
R. L.
Johnston
, and
F.
Dunn
, “
Comprehensive compilation of empirical ultrasonic properties of mammalian tissues
,”
J. Acoust. Soc. Am.
64
,
423
457
(
1978
).
19.
F.
Hamaguchi
and
K.
Ando
, “
Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation
,”
Phys. Fluids
27
,
113103
(
2015
).
20.
H.
Kolsky
, “
An investigation of the mechanical properties of materials at very high rates of loading
,”
Proc. Phys. Soc., Sect. B
62
,
676
700
(
1949
).
21.
A.
Vogel
,
S.
Busch
, and
U.
Parlitz
, “
Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water
,”
J. Acoust. Soc. Am.
100
,
148
165
(
1996
).
22.
A.
Vogel
, “
Nonlinear absorption: Intraocular microsurgery and laser lithotripsy
,”
Phys. Med. Biol.
42
(
895
),
895
912
(
1997
).
23.
D.
Yount
, “
Skins of varying permeability: A stabilization mechanism for gas cavitation nuclei
,”
J. Acoust. Soc. Am.
65
,
1429
1439
(
1979
).
24.
W.
Kang
,
A.
Adnan
,
T.
O’Shaughnessy
, and
A.
Bagchi
, “
Cavitation nucleation in gelatin: Experiment and mechanism
,”
Acta Biomater.
67
,
295
306
(
2018
).
25.
E.
Johnsen
and
T.
Colonius
, “
Implementation of WENO schemes in compressible multicomponent flow problems
,”
J. Comput. Phys.
219
,
715
732
(
2006
).
26.
E.
Johnsen
, “
Numerical simulations of non-spherical bubble collapse: With applications to shockwave lithotripsy
,” Ph.D. thesis,
California Institute of Technology
,
2008
.
27.
V.
Coralic
and
T.
Colonius
, “
Finite-volume weno scheme for viscous compressible multicomponent flows
,”
J. Comput. Phys.
274
,
95
121
(
2014
).
28.
A. B.
Gojani
,
K.
Ohtani
,
K.
Takayama
, and
S. H. R.
Hosseini
, “
Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin
,”
Shock Waves
26
,
63
68
(
2016
).
29.
K. W.
Thompson
, “
Time dependent boundary conditions for hyperbolic systems
,”
J. Comput. Phys.
68
,
1
24
(
1987
).
30.
E. A.
Brujan
and
A.
Vogel
, “
Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom
,”
J. Fluid Mech.
558
,
281
308
(
2006
).
31.
K.
Nagayama
,
Y.
Mori
,
K.
Shimada
, and
M.
Nakahara
, “
Shock Hugoniot compression curve for water up to 1 GPa by using a compressed gas gun
,”
J. Appl. Phys.
91
,
476
482
(
2002
).
32.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2013
).
33.
E. A.
Brujan
,
Cavitation in Non-Newtonian Fluids: With Biomedical and Bioengineering Applications
(
Springer
,
2011
).
34.
C.
Hua
and
E.
Johnsen
, “
Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium
,”
Phys. Fluids
25
,
083101
(
2013
).
35.
R.
Gaudron
,
M. T.
Warnez
, and
E.
Johnsen
, “
Bubble dynamics in a viscoelastic medium with nonlinear elasticity
,”
J. Fluid Mech.
766
,
54
75
(
2015
).
36.
M. T.
Warnez
and
E.
Johnsen
, “
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
,”
Phys. Fluids
27
,
063103
(
2015
).
37.
J. B.
Estrada
,
C.
Barajas
,
D. L.
Henann
,
E.
Johnsen
, and
C.
Franck
, “
High strain-rate soft material characterization via inertial cavitation
,”
J. Mech. Phys. Solids
112
,
291
317
(
2018
).
You do not currently have access to this content.