This paper presents a continued study to our previous work on electroosmotic (EO) flow in a channel with vertical baffle plates by further investigating EO flow through an array of baffle plates arranged in parallel to the channel walls. The flow may be driven either in the direction along or in the direction transverse to the plates, thus distinguishing the longitudinal EO pumping (LEOP) and the transverse EO pumping (TEOP). In both types of EO pumping, it is more interesting to examine the cases when the baffle plates develop a higher zeta potential (denoted by α) than that on the channel walls (β). This semi-analytical study enables us to compare between LEOP and TEOP in the pumping efficiency under similar conditions. The TEOP case is more difficult to solve due to the higher order governing partial differential equations caused by the induced non-uniform pressure gradient distribution. In particular, we examine how the EO pumping rates deviate from those predicted by the Helmholtz-Smoluchowski velocity and illustrate the general trend of optimizing the EO pumping rates with respect to the physical and geometric parameters involved.

1.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
2.
C.
Berendsen
,
C.
Kuijpers
,
J.
Zeegers
, and
A.
Darhuber
, “
Dielectrophoretic deformation of thin liquid films induced by surface charge patterns on dielectric substrates
,”
Soft Matter
9
,
4900
(
2013
).
3.
D. S.
Burgi
, “
Large volume stacking of anions in capillary electrophoresis using an electroosmotic flow modifier as a pump
,”
Anal. Chem.
65
,
3726
(
1993
).
4.
M.
Pevarnik
,
M.
Schiel
,
K.
Yoshimatsu
,
I. V.
Vlassiouk
,
J. S.
Kwon
,
K. J.
Shea
, and
Z. S.
Siwy
, “
Particle deformation and concentration polarization in electroosmotic transport of hydrogels through pores
,”
ACS Nano
7
,
3720
(
2013
).
5.
H.
Chun
, “
Electroosmotic effects on sample concentration at the interface of a micro/nanochannel
,”
Anal. Chem.
89
,
8924
(
2017
).
6.
C.
Heller
, “
Principles of DNA separation with capillary electrophoresis
,”
Electrophoresis
22
,
629
(
2001
).
7.
M.
Mohammadi
,
H.
Madadi
, and
J.
Casals-Terré
, “
Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow
,”
Biomicrofluidics
9
,
054106
(
2015
).
8.
S. S.
Hsieh
,
M. J.
Tsai
, and
Y. C.
Hsieh
, “
DNA stretching under electrokinetically driven forces in curved microchannel flow
,”
J. Nanosci. Nanotechnol.
17
,
8731
(
2017
).
9.
J.
Lallman
,
R.
Flaugh
, and
K. L.
Kounovsky-Shafer
, “
Determination of electroosmotic and electrophoretic mobility of DNA and dyes in low ionic strength solutions
,”
Electrophoresis
39
,
862
(
2018
).
10.
L.
Han
,
S.
Galier
, and
H.
Roux-de Balmann
, “
A phenomenological model to evaluate the performances of electrodialysis for the desalination of saline water containing organic solutes
,”
Desalination
422
,
17
(
2017
).
11.
Y.
Zhang
and
G. C.
Schatz
, “
Conical nanopores for efficient ion pumping and desalination
,”
J. Phys. Chem. Lett.
8
,
2842
(
2017
).
12.
A.
Nayak
, “
Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential
,”
Int. J. Heat Mass Transfer
75
,
135
(
2014
).
13.
F.
Fang
,
N.
Zhang
,
K.
Liu
, and
Z. Y.
Wu
, “
Hydrodynamic and electrodynamic flow mixing in a novel total glass chip mixer with streamline herringbone pattern
,”
Microfluid. Nanofluid.
18
,
887
(
2015
).
14.
M.
Hadigol
,
R.
Nosrati
,
A.
Nourbakhsh
, and
M.
Raisee
, “
Numerical study of electroosmotic micromixing of non-Newtonian fluids
,”
J. Non-Newtonian Fluid Mech.
166
,
965
(
2011
).
15.
M. F.
Al-Rjoub
,
A. K.
Roy
,
S.
Ganguli
, and
R. K.
Banerjee
, “
Assessment of an active-cooling micro-channel heat sink device, using electro-osmotic flow
,”
Int. J. Heat Mass Transfer
54
,
4560
(
2011
).
16.
Y.
Berrouche
and
Y.
Avenas
, “
Power electronics cooling of 100 W/cm2 using AC electroosmotic pump
,”
IEEE Trans. Power Electron.
29
,
449
(
2014
).
17.
D.
Kearney
,
T.
Hilt
, and
P.
Pham
, “
A liquid cooling solution for temperature redistribution in 3D IC architectures
,”
Microelectron. J.
43
,
602
(
2012
).
18.
K. I.
Sotowa
,
A.
Yamamoto
,
K.
Nakagawa
, and
S.
Sugiyama
, “
Indentations and baffles for improving mixing rate in deep microchannel reactors
,”
Chem. Eng. J.
167
,
490
(
2011
).
19.
D. J.
Kang
, “
Effects of baffle configuration on mixing in a T-shaped micro-channel
,”
Micromachines
6
,
765
(
2015
).
20.
F.
Schönfeld
,
V.
Hessel
, and
C.
Hofmann
, “
An optimised split-and-recombine micro-mixer with uniform ‘chaotic’ mixing
,”
Lab Chip
4
,
65
(
2004
).
21.
S.
Hardt
,
H.
Pennemann
, and
F.
Schönfeld
, “
Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer
,”
Microfluid. Nanofluid.
2
,
237
(
2006
).
22.
C. C.
Chang
and
R. J.
Yang
, “
Electrokinetic mixing in microfluidic systems
,”
Microfluid. Nanofluid.
3
,
501
(
2007
).
23.
S.
Mandal
,
U.
Ghosh
,
A.
Bandopadhyay
, and
S.
Chakraborty
, “
Electro-osmosis of superimposed fluids in the presence of modulated charged surfaces in narrow confinements
,”
J. Fluid Mech.
776
,
390
(
2015
).
24.
S.
Veremieiev
,
H.
Thompson
,
M.
Scholle
,
Y.
Lee
, and
P.
Gaskell
, “
Electrified thin film flow at finite Reynolds number on planar substrates featuring topography
,”
Int. J. Multiphase Flow
44
,
48
(
2012
).
25.
B. D.
Iverson
and
S. V.
Garimella
, “
Recent advances in microscale pumping technologies: A review and evaluation
,”
Microfluid. Nanofluid.
5
,
145
(
2008
).
26.
Y. K.
Suh
and
S.
Kang
, “
A review on mixing in microfluidics
,”
Micromachines
1
,
82
(
2010
).
27.
J. M.
Edwards
,
M. N.
Hamblin
,
H. V.
Fuentes
,
B. A.
Peeni
,
M. L.
Lee
,
A. T.
Woolley
, and
A. R.
Hawkins
, “
Thin film electro-osmotic pumps for biomicrofluidic applications
,”
Biomicrofluidics
1
,
014101
(
2007
).
28.
C. F.
Kung
,
C. C.
Chang
, and
C. Y.
Wang
, “
Optimal electro-osmotic pumping of a micro-duct with finned structures
,”
Int. J. Heat Mass Transfer
105
,
758
(
2017
).
29.
A. K. R.
Lai
,
C. C.
Chang
, and
C. Y.
Wang
, “
Optimizing electroosmotic pumping rates in a rectangular channel with vertical gratings
,”
Phys. Fluids
29
,
082002
(
2017
).
30.
R. F.
Probstein
,
Physicochemical Hydrodynamics: An Introduction
(
Butterworth-Heinemann
,
2013
).
31.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
New York
,
2008
).
32.
C.
Rice
and
R.
Whitehead
, “
Electrokinetic flow in a narrow cylindrical capillary
,”
J. Phys. Chem.
69
,
4017
(
1965
).
33.
A.
Ajdari
, “
Generation of transverse fluid currents and forces by an electric field: Electro-osmosis on charge-modulated and undulated surfaces
,”
Phys. Rev. E
53
,
4996
(
1996
).
34.
H. K.
Tsao
, “
Electroosmotic flow through an annulus
,”
J. Colloid Interface Sci.
225
,
247
(
2000
).
35.
S.
Das
and
S.
Chakraborty
, “
Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid
,”
Anal. Chim. Acta
559
,
15
(
2006
).
36.
C. Y.
Wang
and
C. C.
Chang
, “
EOF using the Ritz method: Application to superelliptic microchannels
,”
Electrophoresis
28
,
3296
(
2007
).
37.
C. C.
Chang
and
C. Y.
Wang
, “
Starting electroosmotic flow in an annulus and in a rectangular channel
,”
Electrophoresis
29
,
2970
(
2008
).
38.
C. Y.
Wang
,
Y. H.
Liu
, and
C. C.
Chang
, “
Analytical solution of electro-osmotic flow in a semicircular microchannel
,”
Phys. Fluids
20
,
063105
(
2008
).
39.
C. C.
Chang
and
C. Y.
Wang
, “
Electro-osmotic flow in a sector microchannel
,”
Phys. Fluids
21
,
042002
(
2009
).
40.
C. Y.
Wang
,
C. F.
Kung
, and
C. C.
Chang
, “
Approach to analytic solutions for electroosmotic flow in micro-ducts by eigenfunctions of the Helmholtz equation
,”
Microfluid. Nanofluid.
20
,
1
(
2016
).
41.
Y. H.
Liu
,
C. Y.
Kuo
,
C. C.
Chang
, and
C. Y.
Wang
, “
Electro-osmotic flow through a two-dimensional screen-pump filter
,”
Phys. Rev. E
84
,
036301
(
2011
).
42.
M.
Khan
,
A.
Farooq
,
W. A.
Khan
, and
M.
Hussain
, “
Exact solution of an electroosmotic flow for generalized Burgers fluid in cylindrical domain
,”
Results Phys.
6
,
933
(
2016
).
43.
C. Y.
Wang
and
C. C.
Chang
, “
Electro-osmotic flow in polygonal ducts
,”
Electrophoresis
32
,
1268
(
2011
).
44.
M.
Sadeghi
,
A.
Sadeghi
, and
M. H.
Saidi
, “
Electroosmotic flow in hydrophobic microchannels of general cross section
,”
J. Fluids Eng.
138
,
031104
(
2016
).
45.
C. F.
Kung
,
C. Y.
Wang
, and
C. C.
Chang
, “
A periodic array of nano-scale parallel slats for high-efficiency electroosmotic pumping
,”
Electrophoresis
34
,
3133
(
2013
).
46.
C. F.
Kung
,
C. Y.
Wang
, and
C. C.
Chang
, “
Transition of electrostatic potential from the inside of an open channel to the reservoir
,”
RSC Adv.
4
,
45585
(
2014
).
You do not currently have access to this content.