A well-known limitation of hydrodynamic chromatography arises from the synergistic interaction between transverse diffusion and streamwise convection, which enhances axial dispersion through the Taylor-Aris mechanism. We show that a periodic sequence of slip/no-slip conditions at the channel walls (e.g., representing wall indentations hosting stable air pockets) can significantly reduce axial dispersion, thus enhancing separation performance. The theoretical/numerical analysis is based on a generalization of Brenner’s macrotransport approach to solute transport, here modified to account for the finite-size of the suspended particles. The most effective dispersion-taming outcome is observed when the alternating sequence of slip/no-slip conditions yields non-vanishing cross-sectional flow components. The combination of these components with the hindering interaction between the channel boundaries and the finite-sized particles gives rise to a non-trivial solution of Brenner’s problem on the unit periodic cell, where the cross-sectional particle number density departs from the spatially homogeneous condition. In turn, this effect impacts upon the solution of the so-called b-field defining the large-scale dispersion tensor, with an overall decremental effect on the axial dispersion coefficient and on the Height Equivalent of a Theoretical Plate.

1.
E.
DiMarzio
and
C.
Guttman
, “
Separation by flow
,”
J. Polym. Sci., Part C: Polym. Lett.
7
,
267
272
(
1969
).
2.
E.
DiMarzio
and
C.
Guttman
, “
Separation by flow
,”
Macromolecules
3
,
131
146
(
1970
).
3.
E. A.
Dimarzio
and
C. M.
Guttman
, “
Separation by flow and its application to gel permeation chromatography
,”
J. Chromatogr. A
55
,
83
97
(
1971
).
4.
A. M.
Striegel
and
A. K.
Brewer
, “
Hydrodynamic chromatography
,”
Annu. Rev. Anal. Chem.
5
,
15
34
(
2012
).
5.
E. P.
Gray
,
T. A.
Bruton
,
C. P.
Higgins
,
R. U.
Halden
,
P.
Westerhoff
, and
J. F.
Ranville
, “
Analysis of gold nanoparticle mixtures: A comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS
,”
J. Anal. At. Spectrom.
27
,
1532
1539
(
2012
).
6.
K.
Tiede
,
A. B.
Boxall
,
X.
Wang
,
D.
Gore
,
D.
Tiede
,
M.
Baxter
,
H.
David
,
S. P.
Tear
, and
J.
Lewis
, “
Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge
,”
J. Anal. At. Spectrom.
25
,
1149
1154
(
2010
).
7.
G.
Stegeman
,
J.
Kraak
, and
H.
Poppe
, “
Hydrodynamic and size-exclusion chromatography of polymers on porous particles
,”
J. Chromatogr. A
550
,
721
739
(
1991
).
8.
A.
Adrover
and
S.
Cerbelli
, “
Laminar dispersion at low and high Peclet numbers in finite-length patterned microtubes
,”
Phys. Fluids
29
,
062005
(
2017
).
9.
C.
Iliescu
,
H.
Taylor
,
M.
Avram
,
J.
Miao
, and
S.
Franssila
, “
A practical guide for the fabrication of microfluidic devices using glass and silicon
,”
Biomicrofluidics
6
,
016505
(
2012
).
10.
M. B.
Romanowsky
,
M.
Heymann
,
A. R.
Abate
,
A. T.
Krummel
,
S.
Fraden
, and
D. A.
Weitz
, “
Functional patterning of PDMS microfluidic devices using integrated chemo-masks
,”
Lab Chip
10
,
1521
1524
(
2010
).
11.
S.
Cerbelli
,
M.
Giona
, and
F.
Garofalo
, “
Quantifying dispersion of finite-sized particles in deterministic lateral displacement microflow separators through Brenner’s macrotransport paradigm
,”
Microfluid. Nanofluid.
15
,
431
449
(
2013
).
12.
S.
Cerbelli
,
F.
Garofalo
, and
M.
Giona
, “
Effective dispersion and separation resolution in continuous particle fractionation
,”
Microfluid. Nanofluid.
19
,
1035
1046
(
2015
).
13.
A. M.
Davis
and
E.
Lauga
, “
Geometric transition in friction for flow over a bubble mattress
,”
Phys. Fluids
21
,
011701
(
2009
).
14.
J.
Ou
,
B.
Perot
, and
J. P.
Rothstein
, “
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
,”
Phys. Fluids
16
,
4635
4643
(
2004
).
15.
E.
Lauga
and
H. A.
Stone
, “
Effective slip in pressure-driven Stokes flow
,”
J. Fluid Mech.
489
,
55
77
(
2003
).
16.
H.
Brenner
and
L. J.
Gaydos
, “
The constrained Brownian movement of spherical particles in cylindrical pores of comparable radius: Models of the diffusive and convective transport of solute molecules in membranes and porous media
,”
J. Colloid Interface Sci.
58
,
312
356
(
1977
).
17.
J. R.
Philip
, “
Flows satisfying mixed no-slip and no-shear conditions
,”
Z. Angew. Math. Phys. ZAMP
23
,
353
372
(
1972
).
18.
J. R.
Philip
, “
Integral properties of flows satisfying mixed no-slip and no-shear conditions
,”
Z. Angew. Math. Phys. ZAMP
23
,
960
968
(
1972
).
19.
R.
Aris
, “
On the dispersion of a solute in a fluid flowing through a tube
,”
Proc. R. Soc. A
235
,
67
77
(
1956
).
20.
H.
Brenner
,
Macrotransport Processes
(
Elsevier
,
2013
).
21.
R.
Mauri
, “
Lagrangian self-diffusion of Brownian particles in periodic flow fields
,”
Phys. Fluids
7
,
275
284
(
1995
).
22.
M.
Harada
,
T.
Masudo
, and
T.
Okada
, “
Solute distribution coupled with laminar flow in wide-bore capillaries: What can be separated without chemical or physical fields?
,”
Anal. Sci.
21
,
491
496
(
2005
).
23.
T.
Okada
,
M.
Harada
, and
T.
Kido
, “
Resolution of small molecules by passage through an open capillary
,”
Anal. Chem.
77
,
6041
6046
(
2005
).
24.
A.
Adrover
,
S.
Cerbelli
,
F.
Garofalo
, and
M.
Giona
, “
Convection-dominated dispersion regime in wide-bore chromatography: A transport-based approach to assess the occurrence of slip flows in microchannels
,”
Anal. Chem.
81
,
8009
8014
(
2009
).
25.
A.
Adrover
, “
Effect of secondary flows on dispersion in finite-length channels at high Peclet numbers
,”
Phys. Fluids
25
,
093601
(
2013
).
26.
D. L.
Koch
and
J. F.
Brady
, “
Dispersion in fixed beds
,”
J. Fluid Mech.
154
,
399
427
(
1985
).
27.
M.
Giona
,
A.
Adrover
,
S.
Cerbelli
, and
F.
Garofalo
, “
Laminar dispersion at high Péclet numbers in finite-length channels: Effects of the near-wall velocity profile and connection with the generalized Leveque problem
,”
Phys. Fluids
21
,
123601
(
2009
).
28.
C.-O.
Ng
, “
How does wall slippage affect hydrodynamic dispersion?
,”
Microfluid. Nanofluid.
10
,
47
57
(
2011
).
You do not currently have access to this content.