A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

1.
V. I.
Furdui
and
D. J.
Harrison
, “
Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems
,”
Lab Chip
4
,
614
618
(
2004
).
2.
D. W.
Inglis
,
R.
Riehn
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous microfluidic immunomagnetic cell separation
,”
Appl. Phys. Lett.
85
,
5093
5095
(
2004
).
3.
M.
Arruebo
,
R.
Fernandez-Pacheco
,
M. R.
Ibarra
, and
J.
Santamara
, “
Magnetic nanoparticles for drug delivery
,”
Nano Today
2
,
22
32
(
2007
).
4.
N.
Xia
,
T. P.
Hunt
,
B. T.
Mayers
,
E.
Alsberg
,
G. M.
Whitesides
,
R. M.
Westervelt
, and
D. E.
Ingber
, “
Combined microfluidic-micromagnetic separation of living cells in continuous flow
,”
Biomed. Microdevices
8
,
299
308
(
2006
).
5.
N.
Pamme
and
C.
Wilhelm
, “
Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis
,”
Lab Chip
6
,
974
980
(
2006
).
6.
E. P.
Furlani
, “
Magnetophoretic separation of blood cells at the microscale
,”
J. Phys. D: Appl. Phys.
40
,
1313
(
2007
).
7.
J. D.
Adams
,
U.
Kim
, and
H. T.
Soh
, “
Multitarget magnetic activated cell sorter
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
18165
18170
(
2008
).
8.
K.
Hoshino
,
Y. Y.
Huang
,
N.
Lane
,
M.
Huebschman
,
J. W.
Uhr
,
E. P.
Frenkel
, and
X.
Zhang
, “
Microchip-based immunomagnetic detection of circulating tumor cells
,”
Lab Chip
11
,
3449
3457
(
2011
).
9.
T. P.
Forbes
and
S. P.
Forry
, “
Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells
,”
Lab Chip
12
,
1471
1479
(
2012
).
10.
J.
Zeng
,
Y.
Deng
,
P.
Vedantam
,
T. R.
Tzeng
, and
X.
Xuan
, “
Magnetic separation of particles and cells in ferrofluid flow through a straight microchannel using two offset magnets
,”
J. Magn. Magn. Mater.
346
,
118
123
(
2013
).
11.
M.
Hejazian
,
W.
Li
, and
N. T.
Nguyen
, “
Lab on a chip for continuous-flow magnetic cell separation
,”
Lab Chip
15
,
959
970
(
2015
).
12.
O.
Philippova
,
A.
Barabanova
,
V.
Molchanov
, and
A.
Khokhlov
, “
Magnetic polymer beads: Recent trends and developments in synthetic design and applications
,”
Eur. Polym. J.
47
,
542
559
(
2011
).
13.
J.
Ugelstad
,
P.
Stenstad
,
L.
Kilaas
,
W. S.
Prestvik
,
R.
Herje
,
A.
Berge
, and
E.
Hornes
, “
Monodisperse magnetic polymer particles-new biochemical and biomedical applications
,”
Blood Purif.
11
,
349
(
1993
).
14.
Q. A.
Pankhurst
,
J.
Connolly
,
S. K.
Jones
, and
J.
Dobson
, “
Applications of magnetic nanoparticles in biomedicine
,”
J. Phys. D: Appl. Phys.
36
,
R167
R181
(
2003
).
15.
K.
Nandy
,
S.
Chaudhuri
,
R.
Ganguly
, and
I. K.
Puri
, “
Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices
,”
J. Magn. Magn. Mater.
320
,
1398
1405
(
2008
).
16.
J.
Darabi
and
C.
Guo
, “
On-chip magnetophoretic isolation of CD4 + T cells from blood
,”
Biomicrofluidics
7
,
054106
(
2013
).
17.
C.
Hale
and
J.
Darabi
, “
Magnetophoretic-based microfluidics device for DNA isolation
,”
Biomicrofluidics
8
,
044118
(
2014
).
18.
S. S.
Shevkoplyas
,
A. C.
Siegel
,
R. M.
Westervelt
,
M. G.
Prentissc
, and
G. M.
Whitesides
, “
The force acting on a superparamagnetic bead due to an applied magnetic field
,”
Lab Chip
7
,
1294
1302
(
2007
).
19.
J.
Zhu
,
L.
Liang
, and
X.
Xuan
, “
On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets
,”
Microfluid. Nanofluid.
12
,
65
73
(
2007
).
20.
I.
Safarýk
and
M.
Safarýkova
, in
Scientific and Clinical Applications of Magnetic Carriers
, edited by
U.
Hafeli
,
W.
Schutt
,
J.
Teller
, and
M.
Zborowski
(
Plenum
,
New York
,
1997
), p.
323
.
21.
C.
Mikkelsen
,
M. F.
Hansen
, and
H.
Bruus
, “
Theoretical comparison of magnetic and hydrodynamic interactions between magnetically tagged particles in microfluidic systems
,”
J. Magn. Magn. Mater.
293
,
578
583
(
2005
).
22.
R.
Folkersmaa
,
H. N.
Steina
, and
F. N.
Vosse
, “
Hydrodynamic interactions between two identical spheres held fixed side by side against a uniform stream directed perpendicular to the line connecting the spheres’ centres
,”
Int. J. Multiphase Flow
26
,
877
887
(
2000
).
23.
E. E.
Keaveny
and
M. R.
Maxey
, “
Modelling the magnetic interactions between paramagnetic beads in magnetorheological fluids
,”
J. Comput. Phys.
227
,
9554
9571
(
2008
).
24.
D.
Du
,
D.
Li
,
M.
Thakur
, and
S.
Biswal
, “
Generating an in situ tunable interaction potential for probing 2-D colloidal phase behavior
,”
Soft Matter
9
,
6867
6875
(
2013
).
25.
N.
Osterman
,
I.
Poberaj
,
J.
Dobnikar
,
D.
Frenkel
,
P.
Ziherl
, and
D.
Babić
, “
Field-induced self-assembly of suspended colloidal membranes
,”
Phys. Rev. Lett.
103
,
228301
(
2009
).
26.
U.
Jeong
,
X. W.
Teng
,
Y.
Wang
,
H.
Yang
, and
Y. N.
Xia
, “
Superparamagnetic colloids: Controlled synthesis and niche applications
,”
Adv. Mater.
19
,
33
60
(
2007
).
27.
P.
Tierno
,
O.
Guell
,
F.
Sagues
,
R.
Golestanian
, and
I.
Pagonabarraga
, “
Controlled propulsion in viscous fluids of magnetically actuated colloidal doublets
,”
Phys. Rev. E
81
,
011402
(
2010
).
28.
Y.
Gao
,
A.
van Reenen
,
M. A.
Hulsen
,
A. M.
de Jong
,
M. W. J.
Prins
, and
J. M. J.
den Toonder
, “
Disaggregation of microparticle clusters by induced magnetic dipole–dipole repulsion near a surface
,”
Lab Chip
13
,
1394
1401
(
2013
).
29.
K. W.
Yung
,
P. B.
Landecker
, and
D. D.
Villani
, “
An analytic solution for the force between two magnetic dipoles
,”
Magn. Electr. Sep.
9
,
39
52
(
1998
).
30.
I. S.
Grant
and
W. R.
Phillips
,
Electromagnetism
, Manchester Physics, 2nd ed. (
John Wiley & Sons
,
2008
), ISBN: 978-0-471-92712-9.
31.
D. J.
Griffiths
,
Introduction to Electrodynamics
, 3rd ed. (
Pearson Education
,
2007
), ISBN: 81-7758-293-3.
32.
J.
Greene
and
F. G.
Karioris
, “
Force on a magnetic dipole
,”
Am. J. Phys.
39
,
172
175
(
1970
).
33.
T. H.
Boyer
, “
The force on a magnetic dipole
,”
Am. J. Phys.
56
,
688
692
(
1988
).
34.
K. R.
Brownstein
, “
Force exerted on a magnetic dipole
,”
Am. J. Phys.
61
,
940
941
(
1993
).
35.
L.
Vaidman
, “
Torque and force on a magnetic dipole
,”
Am. J. Phys.
58
,
978
983
(
1990
).
36.
S. A.
Khashan
,
A.
Alazzam
, and
E. P.
Furlani
, “
Computational analysis of enhanced magnetic bio-separation in microfluidic systems with flow-invasive magnetic elements
,”
Sci. Rep.
4
,
5299
(
2014
).
37.
M. M.
Clark
,
Transport Modeling for Environmental Engineers and Scientists
, 2nd ed. (
John Wiley & Sons
,
New Jersey
,
2009
), ISBN: 13: 978-0470260722.
38.
M.
Golozar
,
M.
Molki
, and
J.
Darabi
, “
Computational and performance analysis of a continuous magnetophoretic bioseparation chip with alternating magnetic fields
,”
Microfluid. Nanofluid.
21
,
73
(
2017
).
You do not currently have access to this content.