This paper examines the transition process in a boundary layer on a rotor blade under the impingement of an inlet guide vane wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed axial compressor were investigated using particle image velocimetry. The measurements were carried out at two reduced frequencies (fr = fIGVS0/U2i, fr = 1.35, and fr = 0.675) with the Reynolds number, based on the blade chord and the isentropic inlet velocity, being 97 500. At fr = 1.35, the flow separated at the trailing edge when the wake strength was weak. However, the separation was almost totally suppressed as the wake strength increased. For the stronger wake, both the wake’s high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the airfoil. The boundary layer displacement thickened first due to the negative jet effect. Then, as the disturbances developed underneath the wake, the boundary layer thickness reduced gradually. The high disturbance region convected downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The separation on the suction surface was suppressed until the next wake’s arrival. Because of the long recovery time at fr = 0.675, the boundary layer thickened gradually as the wake convected further downstream and finally separated due to the adverse pressure gradient. The different boundary layer states in turn affected the development of disturbances.

1.
R. J.
Howell
,
O. N.
Ramesh
,
H. P.
Hodson
,
N. W.
Harvey
, and
V.
Schulte
, “
High lift and aft-loaded profiles for low-pressure turbines
,”
J. Turbomach.
123
,
181
(
2001
).
2.
R. E.
Mayle
, “
The role of laminar-turbulent transition in gas turbine engines
,”
J. Turbomach.
113
,
509
(
1991
).
3.
V.
Schulte
and
H. P.
Hodson
, “
Unsteady wake-induced boundary layer transition in high lift LP turbines
,”
J. Turbomach.
120
,
28
(
1998
).
4.
D.
Dorney
,
J. P.
Lake
,
P. I.
King
, and
D. E.
Aships
, “
Experimental and numerical investigation of losses in low-pressure turbine blade rows
,”
Int. J. Turbo Jet Engines
17
,
241
(
2000
).
5.
C. B.
Lee
and
J. Z.
Wu
, “
Transition in wall-bounded flows
,”
Appl. Mech. Rev.
61
,
030802
(
2008
).
6.
Y.
Zhu
,
H.
Yuan
, and
C.
Lee
, “
Experimental investigations of the initial growth of flow asymmetries over a slender body of revolution at high angles of attack
,”
Phys. Fluids
27
,
084103
(
2015
).
7.
Q.
Tang
,
Y.
Zhu
,
C.
Xi
, and
C.
Lee
, “
Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness
,”
Phys. Fluids
27
,
064105
(
2015
).
8.
D. E.
Halstead
,
D. C.
Wisler
,
T. H.
Okiishi
,
G. J.
Walker
,
H. P.
Hodson
, and
H. W.
Shin
, “
Boundary layer development in axial compressors and turbines: Part 1 of 4 composite picture
,”
J. Turbomach.
119
,
114
(
1997
).
9.
X.
Wu
,
R. G.
Jacobs
,
J. C. R.
Hunt
, and
P. A.
Durbin
, “
Simulation of boundary layer transition induced by periodically passing wakes
,”
J. Fluid Mech.
398
,
109
(
1999
).
10.
S.
Zhong
,
C.
Kittichaikan
,
H. P.
Hodson
, and
P. T.
Ireland
, “
Visualisation of turbulent spots under the influence of adverse pressure gradients
,”
Exp. Fluids
28
,
385
(
2000
).
11.
H. P.
Hodson
and
R. J.
Howell
, “
The role of transition in high-lift low-pressure turbines for aeroengines
,”
Prog. Aerosp. Sci.
41
,
419
(
2005
).
12.
R. D.
Stieger
and
H. P.
Hodson
, “
The unsteady development of a turbulent wake through a downstream low-pressure turbine blade passage
,”
J. Turbomach.
127
,
388
(
2005
).
13.
X. F.
Zhang
, “
Separation and transition control on ultra-high-lift low pressure turbine blades in unsteady flow
,” Ph.D. thesis,
University of Cambridge
,
2005
.
14.
X. F.
Zhang
and
H.
Hodson
, “
Effects of Reynolds number and freestream turbulence intensity on the unsteady boundary layer development on an ultra-high-lift low pressure turbine airfoil
,”
J. Turbomach.
132
,
011016
(
2010
).
15.
H. P.
Hodson
and
R. J.
Howell
, “
Bladerow interactions, transition, and high-lift aerofoils in low-pressure turbines
,”
Annu. Rev. Fluid Mech.
37
,
71
(
2005
).
16.
R. X.
Meyer
, “
The effect of wakes on the transient pressure and velocity distributions in turbomachines
,”
Trans. ASME
80
,
1544
(
1958
).
17.
J. D.
Coull
and
H. P.
Hodson
, “
Unsteady boundary-layer transition in low-pressure turbines
,”
J. Fluid Mech.
681
,
370
(
2011
).
18.
W. H.
Zhang
,
H. X.
Liu
,
W.
Li
, and
Z. P.
Zou
, “
Wake-boundary layer interaction on low pressure turbine cascade blades
,”
J. Aerosp. Power
24
,
843
(
2009
).
19.
W.
Zhang
,
Z.
Zou
,
K.
Zhou
,
H.
Liu
, and
J.
Ye
, “
Effects of periodic wakes and freestream turbulence on coherent structures in low-pressure turbine boundary layer
,” in
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
(
ASME
,
2012
), pp.
1335
1346
.
20.
W.
Zhang
,
Z.
Zou
,
L.
Qi
,
J.
Ye
, and
L.
Wang
, “
Effects of freestream turbulence on separated boundary layer in a low-re high-lift LP turbine blade
,”
Comput. Fluids
109
,
1
(
2015
).
21.
X.
Lu
,
Y.
Zhang
,
W.
Li
,
S.
Hu
, and
J.
Zhu
, “
Effects of periodic wakes on boundary layer development on an ultra-high-lift low pressure turbine airfoil
,”
J. Power Energy
231
,
25
(
2017
).
22.
L.
Hilgenfeld
and
M.
Pfitzner
, “
Unsteady boundary layer development due to wake passing effects on a highly loaded linear compressor cascade
,”
J. Turbomach.
126
,
493
(
2004
).
23.
T. A.
Zaki
,
J. G.
Wissink
,
P. A.
Durbin
, and
W.
Rodi
, “
Direct computations of boundary layers distorted by migrating wakes in a linear compressor cascade
,”
Flow, Turbul. Combust.
83
,
307
(
2009
).
24.
T. A.
Zaki
,
J. G.
Wissink
,
W.
Rodi
, and
P. A.
Durbin
, “
Direct numerical simulations of transition in a compressor cascade: The influence of free-stream turbulence
,”
J. Fluid Mech.
665
,
57
(
2010
).
25.
J. G.
Wissink
,
T. A.
Zaki
,
W.
Rodi
, and
P. A.
Durbin
, “
The effect of wake turbulence intensity on transition in a compressor cascade
,”
Flow, Turbul. Combust.
93
,
555
(
2014
).
26.
A. P. S.
Wheeler
,
R. J.
Miller
, and
H. P.
Hodson
, “
The effect of wake induced structures on compressor boundary-layers
,”
J. Turbomach.
129
,
705
(
2007
).
27.
O.
Uzol
,
Y. C.
Chow
,
J.
Katz
, and
C.
Meneveau
, “
Unobstructed particle image velocimetry measurements within an axial turbo-pump using liquid and blades with matched refractive indices
,”
Exp. Fluids
33
,
909
(
2002
).
28.
O.
Uzol
,
Y. C.
Chow
,
J.
Katz
, and
C.
Meneveau
, “
Experimental investigation of unsteady flow field within a two-stage axial turbomachine using particle image velocimetry
,”
J. Turbomach.
124
,
542
(
2002
).
29.
Y. C.
Chow
,
O.
Uzol
, and
J.
Katz
, “
On the flow and turbulence within the wake and boundary layer of a rotor blade located downstream of an IGV
,” in
ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference
(
ASME
,
2003
), p.
505
.
30.
Y. C.
Chow
,
O.
Uzol
,
J.
Katz
, and
C.
Meneveau
, “
Decomposition of the spatially filtered and ensemble averaged kinetic energy, the associated fluxes and scaling trends in a rotor wake
,”
Phys. Fluids
17
,
085102
(
2005
).
31.
F.
Soranna
,
Y. C.
Chow
,
O.
Uzol
, and
J.
Katz
, “
Rotor boundary layer response to an impinging wake
,” in
ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
(
ASME
,
2004
), p.
121
.
32.
F.
Soranna
,
Y. C.
Chow
,
O.
Uzol
, and
J.
Katz
, “
The effect of inlet guide vanes wake impingement on the flow structure and turbulence around a rotor blade
,”
J. Turbomach.
128
,
82
(
2006
).
33.
F.
Soranna
,
Y. C.
Chow
,
O.
Uzol
, and
J.
Katz
, “
The effects of inlet guide vane-wake impingement on the boundary layer and the near-wake of a rotor blade
,”
J. Turbomach.
132
,
041016
(
2010
).
34.
R. D.
Stieger
,
D.
Hollis
, and
H. P.
Hodson
, “
Unsteady surface pressures due to wake-induced transition in a laminar separation bubble on a low-pressure cascade
,”
J. Turbomach.
126
,
544
(
2004
).
35.
L. C.
Jia
,
Y. D.
Zhu
,
Y. X.
Jia
,
H. J.
Yuan
, and
C. B.
Lee
, “
Image pre-processing method for near-wall PIV measurements over moving curved interfaces
,”
Meas. Sci. Technol.
28
,
035201
(
2017
).
36.
A. V.
Dovgal
, “
Laminar boundary layer separation: Instability and associated phenomena
,”
Prog. Aerosp. Sci.
30
,
61
(
1994
).
37.
S. S.
Diwan
and
O. N.
Ramesh
, “
On the origin of the inflectional instability of a laminar separation bubble
,”
J. Fluid Mech.
629
,
263
(
2009
).
38.
C.
Klostermeier
, “
Investigation into the capability of large eddy simulation for turbomachinery design
,” Ph.D. thesis,
University of Cambridge
,
2008
.
39.
N. J.
Georgiadis
,
D. P.
Rizzetta
, and
C.
Fureby
, “
Large-eddy simulation: Current capabilities, recommended practices, and future research
,”
AIAA J.
48
,
1772
(
2010
).
You do not currently have access to this content.