Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, “Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow,” Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.

1.
A.
Gemant
, “
Komplexe Viskosität
,”
Naturwissenschaften
23
(
25
),
406
407
(
1935
).
2.
A.
Gemant
, “
The conception of a complex viscosity and its application to dielectrics
,”
Trans. Faraday Soc.
31
(
175
),
1582
1590
(
1935
).
3.
R. B.
Bird
and
A. J.
Giacomin
, “
Who conceived the complex viscosity?
Rheol. Acta
51
(
6
),
481
486
(
2012
).
4.
A. J.
Giacomin
and
J. M.
Dealy
, “
Using large-amplitude oscillatory shear
,” in
Rheological Measurement
, 2nd ed., edited by
A. A.
Collyer
and
D. W.
Clegg
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1998
), Chap. 11, pp.
327
356
.
5.
A. J.
Giacomin
, “
A sliding plate melt rheometer incorporating a shear stress transducer
,” Ph.D. thesis,
Chemical Engineering Department, McGill University
,
Montreal, Canada
,
1987
.
6.
J.-E.
Bae
and
K. S.
Cho
, “
Analytical studies on the LAOS behaviors of some popularly used viscoelastic constitutive equations with a new insight on stress decomposition of normal stresses
,”
Phys. Fluids
29
(
9
),
093103
(
2017
).
7.
K. S.
Cho
,
Viscoelasticity of Polymers: Theory and Numerical Algorithms
, Springer Series in Materials Science (
Springer
,
Dordrecht
,
2016
), Vol. 241.
8.
W.
Philippoff
, “
Vibrational measurements with large amplitudes
,”
Trans. Soc. Rheol.
10
(
1
),
317
334
(
1966
).
9.
J. S.
Dodge
, “
Oscillatory shear of non-linear fluids
,” Ph.D. thesis,
Chemistry Department, Case Western Reserve University
,
Cleveland, OH
,
1969
.
10.
J. S.
Dodge
and
I. M.
Krieger
, “
Oscillatory shear of nonlinear fluids I. Preliminary investigation
,”
Trans. Soc. Rheol.
15
(
4
),
589
601
(
1971
).
11.
I. M.
Krieger
and
T. F.
Niu
, “
A rheometer for oscillatory studies of nonlinear fluids
,”
Rheol. Acta
12
,
567
571
(
1973
).
12.
K.
Hyun
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
(
12
),
1697
1753
(
2011
).
13.
M. H.
Padé
, “
Sur la représentation approchée d’une fonction par des fractions rationnelles
,”
Ann. Sci. Ec. Norm. Super.
9
,
3
93
(
1892
).
14.
A.
Baker
, Jr.
,
Essentials of Pade Approximants
(
Academic Press
,
New York
,
1975
).
15.
T.
Chantrasmi
,
A.
Doostan
, and
G.
Iaccarino
, “
Padé-legendre approximants for uncertainty analysis with discontinuous response surfaces
,”
J. Comput. Phys.
228
(
19
),
7159
7180
(
2009
).
16.
M. C.
Dallaston
and
S. W.
McCue
, “
Accurate series solutions for gravity-driven Stokes waves
,”
Phys. Fluids
22
(
8
),
082104
(
2010
).
17.
T.
Doi
,
A.
Santos
, and
M.
Tij
, “
Numerical study of the influence of gravity on the heat conductivity on the basis of kinetic theory
,”
Phys. Fluids
11
(
11
),
3553
3559
(
1999
).
18.
J. P.
Gleeson
, “
A closure method for random advection of a passive scalar
,”
Phys. Fluids
12
(
6
),
1472
1484
(
2000
).
19.
X. L.
Li
and
Q.
Zhang
, “
A comparative numerical study of the Richtmyer-Meshkov instability with nonlinear analysis in two and three dimensions
,”
Phys. Fluids
9
(
10
),
3069
3077
(
1997
).
20.
R. M.
Mirie
and
S. A.
Pennell
, “
Internal solitary waves in a two-fluid system
,”
Phys. Fluids A
1
(
6
),
986
991
(
1989
).
21.
K.
Ohkitani
and
J. D.
Gibbon
, “
Numerical study of singularity formation in a class of Euler and Navier–Stokes flows
,”
Phys. Fluids
12
(
12
),
3181
3194
(
2000
).
22.
L.
Rukes
,
M.
Sieber
,
C. O.
Paschereit
, and
K.
Oberleithner
, “
The impact of heating the breakdown bubble on the global mode of a swirling jet: Experiments and linear stability analysis
,”
Phys. Fluids
28
(
10
),
104102
(
2016
).
23.
O.
Takeshi
, “
Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number
,”
Phys. Fluids
11
(
11
),
3247
3269
(
1999
).
24.
J. F.
Trahan
,
R. G.
Hussey
, and
R. P.
Roger
, “
The velocity of a circular disk moving edgewise in quasi-steady Stokes flow toward a plane boundary
,”
Phys. Fluids
11
(
9
),
2463
2470
(
1999
).
25.
P. A.
Tyvand
and
A. R. F.
Storhaug
, “
Green functions for impulsive free-surface flows due to bottom deflections in two-dimensional topographies
,”
Phys. Fluids
12
(
11
),
2819
2833
(
2000
).
26.
Q.
Zhang
and
S.-I.
Sohn
, “
Nonlinear theory of unstable fluid mixing driven by shock wave
,”
Phys. Fluids
9
(
4
),
1106
1124
(
1997
).
27.
A.
Cohen
, “
A Padé approximant to the inverse Langevin function
,”
Rheol. Acta
30
,
270
273
(
1991
).
28.
R.
Jedynak
, “
Approximation of the inverse Langevin function revisited
,”
Rheol. Acta
54
,
29
39
(
2015
).
29.
R.
Jedynak
, “
New facts concerning the approximation of the inverse Langevin function
,”
J. Non-Newtonian Fluid Mech.
249
,
8
25
(
2017
).
30.
M.
Sauzade
,
G. J.
Elfring
, and
E.
Lauga
, “
Taylor’s swimming sheet: Analysis and improvement of the perturbation series
,”
Phys. D
240
,
1567
1573
(
2011
).
31.
A. J.
Giacomin
,
C.
Saengow
,
M.
Guay
, and
C.
Kolitawong
, “
Padé approximants for large-amplitude oscillatory shear flow
,”
Rheol. Acta
54
(
8
),
679
693
(
2015
), Errata: In Eq. (35), “Sτ” should be “Sτ”.
32.
M.
Katzarova
,
L.
Yang
,
M.
Andreev
,
A.
Córdoba
, and
J. D.
Schieber
, “
Analytic slip-link expressions for universal dynamic modulus predictions of linear monodisperse polymer melts
,”
Rheol. Acta
54
(
3
),
169
183
(
2015
).
33.
E.
Darabi
and
M.
Itskov
, “
A simple and accurate approximation of the inverse Langevin dunction
,”
Rheol. Acta
54
(
5
),
455
459
(
2015
).
34.
B. C.
Marchi
and
E. M.
Arruda
, “
An error-minimizing approach to inverse Langevin approximations
,”
Rheol. Acta
54
(
11-12
),
887
902
(
2015
).
35.
Q.
Huang
and
H. K.
Rasmussen
, “
The transition between undiluted and oligomer-diluted states of nearly monodisperse polystyrenes in extensional flow
,”
Rheol. Acta
56
(
9
),
719
727
(
2017
).
36.
H. K.
Rasmussen
and
Q.
Huang
, “
Constant interchain pressure effect in extensional flows of oligomer diluted polystyrene and poly (methyl methacrylate) melts
,”
Rheol. Acta
56
(
1
),
27
34
(
2017
).
37.
C. I.
Mendoza
, “
A simple semiempirical model for the effective viscosity of multicomponent suspensions
,”
Rheol. Acta
56
(
5
),
487
499
(
2017
).
38.
C.
Saengow
,
A. J.
Giacomin
,
N.
Khalaf
, and
M.
Guay
, “
Simple accurate expressions for shear stress in large-amplitude oscillatory shear flow
,”
Nihon Reoroji Gakkaishi (J. Soc. Rheol., Jpn.)
45
(
5
),
251
260
(
2017
).
39.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
(
4
),
043101
(
2017
).
40.
K.
Weissenberg
, “
Abnormal substances and abnormal phenomena of flow
,” in
Proceedings of the International Congress on Rheology
(
North-Holland Publishing Company
,
Holland, Amsterdam
,
1948
), pp.
I-29
I-46
.
41.
K.
Weissenberg
, “
Rheology of hydrocarbon gels
,”
Proc. R. Soc. London, Ser. A
200
(
1061
),
183
188
(
1950
).
42.
C.
Saengow
and
A. J.
Giacomin
, “
Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow
,”
Phys. Fluids
29
(
12
),
121601
(
2017
).
43.
A. S.
Lodge
, “
Recent network theories of the rheological properties of moderately concentrated polymer solutions
,” in
Phénomènes de Relaxation et de Fluage en Rhéologie Non-Linéaire
(
Editions du C.N.R.S.
,
Paris
,
1961
), pp.
51
63
.
44.
R. H.
Ewoldt
, “
Defining nonlinear rheological material functions for oscillatory shear
,”
J. Rheol.
57
(
1
),
177
195
(
2013
).
45.
R. B.
Bird
,
A. J.
Giacomin
,
A. M.
Schmalzer
, and
C.
Aumnate
, “
Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
,”
J. Chem. Phys.
140
,
074904
(
2014
).
46.
Ad Hoc Committee on Official Nomenclature and Symbols
, “
Official symbols and nomenclature of the society of rheology
,”
J. Rheol.
57
,
1047
(
2013
).
47.
A. J.
Giacomin
and
R. B.
Bird
, “
Normal stress differences in large-amplitude oscillatory shear flow for the corotational ‘ANSR’ model
,”
Rheol. Acta
50
(
9
),
741
752
(
2011
).
48.
D.
Ahirwal
,
S.
Filipe
,
I.
Neuhaus
,
M.
Busch
,
G.
Schlatter
, and
M.
Wilhelm
, “
Large amplitude oscillatory shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene
,”
J. Rheol.
58
(
3
),
635
658
(
2014
).
49.
K.
Osaki
, “
On the normal stress measurement in coutte flow
,”
Nihon Reoroji Gakkaishi (J. Soc. Rheol., Jpn.)
23
(
4
),
229
232
(
1995
).
50.
J. G.
Oakley
and
A. J.
Giacomin
, “
A sliding plate melt rheometer to measure the normal thrust in large amplitude oscillatory shear
,” in
SPE Technical Paper, XXXVIII, Proceedings of Annual Technical Conference and Exhibition (ATCE)
(
Society of Plastics Engineers
,
Detroit, MI
,
1992
), Vol. II, pp.
1752
1754
.
51.
D.
Merger
, “
Large amplitude oscillatory shear investigations of colloidal systems: Experiments and constitutive model predictions
,” Ph.D. thesis,
Karlsruher Institut für Technologie (KIT)
,
Karlsruhe
,
2015
.
52.
C.
Saengow
, “
Polymer process partitioning approach: Plastic pipe extrusion
,” Ph.D. thesis,
Mechanical and Aerospace Engineering Department, King Mongkut’s University of Technology North Bangkok
,
Bangkok, Thailand
,
2016
.
53.
C.
Saengow
, “
Polymer process partitioning: Extruding plastic pipe
,” Ph.D. thesis,
Polymers Research Group, Chemical Engineering Department, Queen’s University
,
Kingston, Canada
,
2016
.
54.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Extruding plastic pipe from eccentric dies
,”
J. Non-Newtonian Fluid Mech.
223
,
176
199
(
2015
).
55.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Knuckle formation from melt elasticity in plastic pipe extrusion
,”
J. Non-Newtonian Fluid Mech.
242
,
11
22
(
2017
).
56.
C.
Saengow
and
A. J.
Giacomin
, “
Fluid elasticity in plastic pipe extrusion: Loads on die barrel
,”
Int. Polymer Proc.
32
(
5
),
648
658
(
2017
).
57.
R. B.
Bird
and
A. J.
Giacomin
, “
Polymer fluid dynamics: Continuum and molecular approaches
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
479
507
(
2016
).
58.
R. B.
Bird
and
W. J.
Drugan
, “
An exploration and further study of an enhanced Oldroyd model
,”
Phys. Fluids
29
(
5
),
053103
(
2017
).
59.
A. J.
Giacomin
and
C.
Saengow
, “
Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow
,” PRG Report No. 030, QU-CHEE-PRG-TR–2017-30,
Polymers Research Group, Chemical Engineering Department, Queen’s University
,
Kingston, Canada
,
May 2017
, pp.
1
4
.
60.
H.
Jeffreys
,
The Earth: Its Origin, History and Physical Constitution
(
Cambridge University Press
,
London
,
1924
).
61.
H.
Jeffreys
,
The Earth: Its Origin, History and Physical Constitution
, 2nd ed. (
Cambridge University Press
,
London
,
1929
).
62.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
New York
,
1977
), Vol. 1.
63.
J. G.
Oldroyd
, “
Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids
,”
Proc. R. Soc. A
245
,
278
297
(
1958
).
64.
Q.
and
J.
,
Polymer Rheology
(
Higher Education Press
,
Beijing
,
2002
).
65.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions
(
Buttersworths
,
Boston
,
1988
).
66.
C. D.
Han
,
Rheology and Processing of Polymeric Materials: Volume I Polymer Rheology
(
Oxford University Press
,
New York
,
2007
).
67.
G.
Böhme
, in
Strömungsmechanik Nicht-Newtonscher Fluide
, edited by
B. G.
Teubner
(
Vieweg+Teubner Verlag
,
Stuttgart
,
1981
).
68.
L. M.
Jbara
,
A. J.
Giacomin
, and
P. H.
Gilbert
, “
Macromolecular origins of fifth shear stress harmonic in large-amplitude oscillatory shear flow
,”
Nihon Reoroji Gakkaishi (J. Soc. Rheol., Jpn.)
44
(
5
),
289
302
(
2016
).
69.
J. M.
Dealy
,
J. F.
Petersen
, and
T. T.
Tee
, “
A concentric-cylinder rheometer for polymer melts
,”
Rheol. Acta
12
(
4
),
550
558
(
1973
).
70.
T. T.
Tee
and
J. M.
Dealy
, “
Nonlinear viscoelasticity of polymer melts
,”
Trans. Soc. Rheol.
19
(
4
),
595
615
(
1975
).
71.
T. T.
Tee
, “
Large amplitude oscillatory shearing of polymer melts
,” Ph.D. thesis,
Department of Chemical Engineering, McGill University
,
Montreal, Canada
,
1974
.
72.
R. H.
Ewoldt
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
(
2
),
191
212
(
2010
).
73.
R. H.
Ewoldt
, “
Nonlinear viscoelastic materials: Bioinspired applications and new characterization measures
,” Ph.D. thesis,
Mechanical Engineering Department, Massachusetts Institute of Technology
,
Massachusetts
,
2009
.
74.
P.
Ptaszek
, “
A geometrical interpretation of large amplitude oscillatory shear (LAOS) in application to fresh food foams
,”
J. Food Eng.
146
,
53
61
(
2015
).
75.
C.
Saengow
,
A. J.
Giacomin
,
P. H.
Gilbert
, and
C.
Kolitawong
, “
Reflections on inflections
,”
Korea-Aust. Rheol. J.
27
(
4
),
267
285
(
2015
).
76.
C.
Saengow
and
A. J.
Giacomin
, “
Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework
,”
Phys. Fluids
30
(
3
),
030703
(
2018
).
77.
C.
Saengow
,
A. J.
Giacomin
,
X.
,
C.
Kolitawong
,
C.
Aumnate
, and
A. W.
Mix
, “
Bubble growth from first principles
,”
Can. J. Chem. Eng.
94
,
1560
1575
(
2016
).
78.
T.
Schweizer
, “
Measurement of the first and second normal stress differences in a polystyrene melt with a cone and partitioned plate tool
,”
Rheol. Acta
41
(
4
),
337
344
(
2002
).
79.
T.
Schweizer
, “
Comparing cone-partitioned plate and cone-standard plate shear rheometry of a polystyrene melt
,”
J. Rheol.
47
(
4
),
1071
1085
(
2003
).
80.
T.
Schweizer
, “
A quick guide to better viscosity measurements of highly viscous fluids
,”
Appl. Rheol.
14
(
4
),
197
201
(
2004
).
81.
T.
Schweizer
,
J. V.
Meerveld
, and
H. C.
Öttinger
, “
Nonlinear shear rheology of polystyrene melt with narrow molecular weight distribution—Experiment and theory
,”
J. Rheol.
48
(
6
),
1345
1363
(
2004
).
82.
F.
Snijkers
and
D.
Vlassopoulos
, “
Cone-partitioned-plate geometry for the ARES rheometer with temperature control
,”
J. Rheol.
55
(
6
),
1167
1186
(
2011
).
83.
A. J.
Giacomin
,
P. H.
Gilbert
,
D.
Merger
, and
M.
Wilhelm
, “
Large-amplitude oscillatory shear: Comparing parallel-disk with cone-plate flow
,”
Rheol. Acta
54
,
263
285
(
2015
).
84.
H. W.
Gao
, “
The effect of the molecular weight and molecular weight distribution on the viscoelastic flow functions of linear polystyrene solutions
,” Ph.D. thesis,
Department of Chemical Engineering, University of Utah
,
Salt Lake City, Utah
,
1979
.
85.
W. R.
Leppard
, “
Viscoelasticity: Stress measurements and constitutive theory
,” Ph.D. thesis,
Department of Chemical Engineering, University of Utah
,
Salt Lake City, Utah
,
1975
.
86.
A. S.
Lodge
,
Elastic Liquids
(
Academic Press
,
London
,
1964
).
87.
T. W.
Spriggs
, “
Constitutive equations for viscoelastic fluids
,” Ph.D. thesis,
Chemical Engineering Department, University of Wisconsin
,
Madison, WI
,
1966
.
88.
M. C.
Williams
and
R. B.
Bird
, “
Three-constant Oldroyd model for viscoelastic fluids
,”
Phys. Fluids
5
,
1126
1127
(
1962
).
89.
M. C.
Williams
and
R. B.
Bird
, “
Oscillatory behavior of normal stresses in viscoelastic fluids
,”
Ind. Eng. Chem. Fundam.
3
,
42
49
(
1964
).
90.
T. W.
Spriggs
, “
A four-constant model for viscoelastic fluids
,”
Chem. Eng. Sci.
20
,
931
940
(
1965
).
91.
L. C.
Akers
and
M. C.
Williams
, “
Oscillatory normal stresses in dilute polymer solutions
,”
J. Chem. Phys.
51
(
9
),
3834
3841
(
1969
).
92.
R. B.
Bird
,
H. R.
Warner
, Jr.
, and
D. C.
Evans
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,”
Adv. Polym. Sci.
8
,
1
89
(
1971
).
93.
L. G.
Leal
and
E. J.
Hinch
, “
The rheology of a suspension of nearly spherical particles subject to Brownian rotations
,”
J. Fluid Mech.
55
(
4
),
745
765
(
1972
).
94.
S. I.
Abdel-Khalik
,
O.
Hassager
, and
R. B.
Bird
, “
The Goddard expansion and the kinetic theory for solutions of rodlike macromolecules
,”
J. Chem. Phys.
61
(
10
),
4312
4316
(
1974
).
95.
R. B.
Bird
,
O.
Hassager
, and
S. I.
Abdel-Khalik
, “
Co-rotational rheological models and the Goddard expansion
,”
AIChE J.
20
,
1041
1066
(
1974
).
96.
C. Y.
Mou
and
R. M.
Mazo
, “
Normal stress in a solution of a plane-polygonal polymer under oscillating shearing flow
,”
J. Chem. Phys.
67
,
5972
(
1977
).
97.
J. G.
Oakley
, “
Measurement of normal thrust and evaluation of upper-convected Maxwell models in large amplitude oscillatory shear
,” M.S. thesis,
Texas A&M University, Mechanical Engineering Department
,
College Station, TX
,
1992
.
98.
J. G.
Oakley
and
A. J.
Giacomin
, “
A sliding plate normal thrust rheometer for molten plastics
,”
Polym. Eng. Sci.
34
(
7
),
580
584
(
1994
).
99.
W.
Yu
,
M.
Bousmina
,
M.
Grmela
, and
C.
Zhou
, “
Modeling of oscillatory shear flow of emulsions under small and large deformation fields
,”
J. Rheol.
46
,
1401
1418
(
2002
).
100.
C.
Zhōu
,
Principles of Polymer Processing
(
Science Press
,
Beijing
,
2004
), ISBN: 7-03-012434-0.
101.
A. K.
Gurnon
and
N. J.
Wagner
, “
Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and non-banding wormlike micelles
,”
J. Rheol.
56
,
333
(
2012
).
102.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
(
19-20
),
1081
1099
(
2011
).
103.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Corrigenda: ‘Large-amplitude oscillatory shear flow from the corotational Maxwell model,’ [J. Non-Newtonian Fluid Mech. 166, 1081–1099 (2011)]
,”
J. Non-Newtonian Fluid Mech.
187-188
,
48
(
2012
).
104.
A. M.
Schmalzer
and
A. J.
Giacomin
, “
Orientation in large-amplitude oscillatory shear
,”
Macromol. Theory Simul.
24
(
3
),
181
207
(
2015
).
105.
A. M.
Schmalzer
, “
Large-amplitude oscillatory shear flow of rigid dumbbell suspensions
,” Ph.D. thesis,
University of Wisconsin, Mechanical Engineering Department
,
Madison, WI
,
2014
.
106.
A. M.
Schmalzer
,
R. B.
Bird
, and
A. J.
Giacomin
, “
Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions
,”
J. Non-Newtonian Fluid Mech.
222
,
56
71
(
2015
).
107.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow
,”
Macromol. Theory Simul.
24
(
4
),
352
392
(
2015
).
108.
R. L.
Thompson
,
A. A.
Alicke
, and
P. R.
de Souza Mendez
, “
Model-based material dunctions for SAOS and LAOS analyses
,”
J. Non-Newtonian Fluid Mech.
215
,
19
30
(
2015
).
109.
P.
Poungthong
,
C.
Saengow
,
A. J.
Giacomin
,
C.
Kolitawong
,
D.
Merger
, and
M.
Wilhelm
, “
Padé approximant for normal stress differences in large-amplitude oscillatory shear flow
,” PRG Report No. 038, QU-CHEE-PRG-TR–2017-38,
Polymers Research Group, Chemical Engineering Department, Queen’s University
,
Kingston, Canada
,
November, 2017
.
110.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
, Revised 2nd ed. (
Wiley & Sons
,
New York
,
2007
).
111.
R. B.
Bird
,
W. E.
Stewart
,
E. N.
Lightfoot
, and
D. J.
Klingenberg
,
Introductory Transport Phenomena
(
Wiley & Sons
,
New York
,
2015
).
You do not currently have access to this content.