A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman’s model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

1.
M.
Lesieur
and
O.
Metais
, “
New trends in large-eddy simulations of turbulence
,”
Annu. Rev. Fluid Mech.
28
,
45
82
(
1996
).
2.
C.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
32
(
2000
).
3.
U.
Piomelli
and
E.
Balaras
, “
Wall-layer models for large-eddy simulations
,”
Annu. Rev. Fluid Mech.
34
,
349
374
(
2002
).
4.
H.
Pitsch
, “
Large-eddy simulation of turbulent combustion
,”
Annu. Rev. Fluid Mech.
38
,
453
482
(
2006
).
5.
C.
Fureby
, “
ILES and LES of complex engineering turbulent flows
,”
J. Fluid Eng.
129
,
1514
1523
(
2007
).
6.
H.
Jeanmart
and
G.
Winckelmans
, “
Investigation of eddy-viscosity models modified using discrete filters: A simplified regularized variational multiscale model and an enhanced field model
,”
Phys. Fluids
19
,
055110
(
2007
).
7.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations: I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
164
(
1963
).
8.
J. W.
Deardorff
, “
A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers
,”
J. Fluid Mech.
41
,
453
480
(
1970
).
9.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
1765
(
1991
).
10.
D. K.
Lilly
, “
A proposed modification of Germano subgrid-scale closure method
,”
Phys. Fluids A
4
,
633
635
(
1992
).
11.
E.
Bou-Zeid
,
C.
Meneveau
, and
M.
Parlange
, “
A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows
,”
Phys. Fluids
17
,
025105
(
2005
).
12.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow Turbul. Combust.
62
,
183
200
(
1999
).
13.
A.
Vreman
, “
An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications
,”
Phys. Fluids
16
,
3670
3681
(
2004
).
14.
S.
Ryu
and
G.
Iaccarino
, “
A subgrid-scale eddy-viscosity model based on the volumetric strain-stretching
,”
Phys. Fluids
26
,
065107
(
2014
).
15.
F.
Nicoud
,
H. B.
Toda
,
O.
Cabrit
,
S.
Bose
, and
J.
Lee
, “
Using singular values to build a subgrid-scale model for large eddy simulations
,”
Phys. Fluids
23
,
085106
(
2011
).
16.
N.
Park
,
S.
Lee
,
J.
Lee
, and
H.
Choi
, “
A dynamic subgrid-scale eddy viscosity model with a global model coefficient
,”
Phys. Fluids
18
,
125109
(
2006
).
17.
D.
You
and
P.
Moin
, “
A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries
,”
Phys. Fluids
19
,
065110
(
2007
).
18.
A. W.
Vreman
,
J. A. V.
Oijen
,
L. P. H. D.
Goey
, and
R. J. M.
Bastiaans
, “
Subgrid scale modeling in large-eddy simulation of turbulent combustion using premixed flamelet chemistry
,”
Flow, Turbul. Combust.
82
,
511
535
(
2009
).
19.
Z.
Jiang
,
Z.
Xia
,
Y.
Shi
, and
S.
Chen
, “
Large-eddy simulation of plane channel flow with Vreman’s model
,”
J. Turbul.
17
,
807
822
(
2016
).
20.
L.
Temmerman
and
M. A.
Leschziner
, “
Large eddy simulation of separated flow in a streamwise periodic channel constriction
,” in 2nd Symposium on Turbulence and Shear-Flow Phenomena,
2001
.
21.
S.
Ryu
,
A.
Campos
,
K.
Duraisamy
, and
G.
Iaccarino
, “
Large eddy simulation of a wing-body junction flow
,”
AIAA J.
54
,
793
804
(
2016
).
22.
J. P.
Johnston
,
R. M.
Halleen
, and
D. K.
Lezius
, “
Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow
,”
J. Fluid Mech.
56
,
533
559
(
1972
).
23.
O.
Grundestam
,
S.
Wallin
, and
A. V.
Johansson
, “
Direct numerical simulations of rotating turbulent channel flow
,”
J. Fluid Mech.
598
,
177
199
(
2008
).
24.
R.
Kristoffersen
and
H. I.
Andersson
, “
Direct simulations of low-Reynolds-number turbulent flow in a rotating channel
,”
J. Fluid Mech.
256
,
163
197
(
1993
).
25.
Y.
Nagano
and
H.
Hattori
, “
Direct numerical simulation and modelling of spanwise rotating channel flow with heat transfer
,”
J. Turbul.
4
,
1
15
(
2003
).
26.
Z.
Xia
,
Y.
Shi
, and
S.
Chen
, “
Direct numerical simulation of turbulent channel flow with spanwise rotation
,”
J. Fluid Mech.
788
,
42
56
(
2016
).
27.
G.
Brethouwer
, “
Statistics and structure of spanwise rotating turbulent channel flow at moderate Reynolds numbers
,”
J. Fluid Mech.
828
,
424
458
(
2017
).
28.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
You do not currently have access to this content.