In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.

1.
J.
Hua
and
J.
Lou
, “
Numerical simulation of bubble rising in viscous liquid
,”
J. Comput. Phys.
222
,
769
795
(
2007
).
2.
H.
Huang
,
J.-J.
Huang
, and
X.-Y.
Lu
, “
A mass-conserving axisymmetric multiphase lattice Boltzmann method and its application in simulation of bubble rising
,”
J. Comput. Phys.
269
,
386
402
(
2014
).
3.
A.
Gupta
and
R.
Kumar
, “
Lattice Boltzmann simulation to study multiple bubble dynamics
,”
Int. J. Heat Mass Transfer
51
,
5192
5203
(
2008
).
4.
H.
Ding
,
P. D. M.
Spelt
, and
C.
Shu
, “
Diffuse interface model for incompressible two-phase flows with large density ratios
,”
J. Comput. Phys.
226
,
2078
2095
(
2007
).
5.
X.
He
,
S.
Chen
, and
R.
Zhang
, “
A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability
,”
J. Comput. Phys.
152
,
642
663
(
1999
).
6.
A.
Fakhari
and
M.-H.
Rahimian
, “
Investigation of deformation and breakup of a falling droplet using a multiple-relaxation-time lattice Boltzmann method
,”
Comput. Fluids
40
,
156
171
(
2011
).
7.
M.
Jalaal
and
K.
Mehravaran
, “
Fragmentation of falling liquid droplets in bag breakup mode
,”
Int. J. Multiphase Flow
47
,
115
132
(
2012
).
8.
J.
Wu
,
C.
Liu
, and
N.
Zhao
, “
Dynamics of falling droplets impact on a liquid film: Hybrid lattice Boltzmann simulation
,”
Colloids Surf., A
472
,
92
100
(
2015
).
9.
K. E.
Teigen
,
P.
Song
,
J.
Lowengrub
, and
A.
Voigt
, “
A diffuse-interface method for two-phase flows with soluble surfactants
,”
J. Comput. Phys.
230
,
375
393
(
2011
).
10.
J.-J.
Xu
and
W.
Ren
, “
A level-set method for two-phase flows with moving contact line and insoluble surfactant
,”
J. Comput. Phys.
263
,
71
90
(
2014
).
11.
S.
Ganesan
and
L.
Tobiska
, “
A coupled arbitrary Lagrangian–Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants
,”
J. Comput. Phys.
228
,
2859
2873
(
2009
).
12.
M.
Souli
and
J.-P.
Zolesio
, “
Arbitrary Lagrangian–Eulerian and free surface methods in fluid mechanics
,”
Comput. Methods Appl. Mech. Eng.
191
,
451
466
(
2001
).
13.
M.
Muradoglu
and
G.
Tryggvason
, “
A front-tracking method for computation of interfacial flows with soluble surfactants
,”
J. Comput. Phys.
227
,
2238
2262
(
2008
).
14.
G.
Tryggvason
,
B.
Bunner
,
A.
Esmaeeli
,
D.
Juric
,
N.
Al-Rawahi
,
W.
Tauber
,
J.
Han
,
S.
Nas
, and
Y.-J.
Jan
, “
A front-tracking method for the computations of multiphase flow
,”
J. Comput. Phys.
169
,
708
759
(
2001
).
15.
D.
Gueyffier
,
J.
Li
,
A.
Nadim
,
R.
Scardovelli
, and
S.
Zaleski
, “
Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows
,”
J. Comput. Phys.
152
,
423
456
(
1999
).
16.
D.
Lörstad
and
L.
Fuchs
, “
High-order surface tension VOF-model for 3D bubble flows with high density ratio
,”
J. Comput. Phys.
200
,
153
176
(
2004
).
17.
S.
Osher
and
J.
Sethian
, “
Fronts propagating with curvature-dependent speed–algorithms based on Hamilton-Jacobi formulations
,”
J. Comput. Phys.
79
,
12
49
(
1988
).
18.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
159
(
1994
).
19.
M.
Sussman
and
E.-G.
Puckett
, “
A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows
,”
J. Comput. Phys.
162
,
301
337
(
2000
).
20.
Y.
Wang
,
C.
Shu
,
H.-B.
Huang
, and
C.-J.
Teo
, “
Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio
,”
J. Comput. Phys.
280
,
404
423
(
2015
).
21.
Y.
Wang
,
C.
Shu
,
J.-Y.
Shao
,
J.
Wu
, and
X.-D.
Niu
, “
A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio
,”
J. Comput. Phys.
290
,
336
351
(
2015
).
22.
J.-J.
Xu
,
Z.
Li
,
J.
Lowengrub
, and
H.
Zhao
, “
A level-set method for interfacial flows with surfactant
,”
J. Comput. Phys.
212
,
590
616
(
2006
).
23.
L.
Jiang
,
F.
Liu
, and
D.
Chen
, “
A fast particle level set method with optimized particle correction procedure for interface capturing
,”
J. Comput. Phys.
299
,
804
819
(
2015
).
24.
R.-R.
Nourgaliev
,
S.
Wiri
,
N.-T.
Dinh
, and
T.-G.
Theofanous
, “
On improving mass conservation of level set by reducing spatial discretization errors
,”
Int. J. Multiphase Flow
31
,
1329
1336
(
2005
).
25.
D.
Enright
,
R.
Fedkiw
,
J.
Ferziger
, and
I.
Mitchell
, “
A hybrid particle level set method for improved interface capturing
,”
J. Comput. Phys.
183
,
83
116
(
2002
).
26.
D.
Enright
,
D.
Nguyen
,
F.
Gibou
, and
R.
Fedkiw
, “
Using the particle level set method and a second order accurate pressure boundary condition for free surface flows
,” in
Proceedings of the 4th ASME-JSME Joint Fluids Engineering Conference, Number FEDSM2003
(
ASME
,
2003
), p.
45144
.
27.
F.
Losasso
,
R.
Fedkiw
, and
S.
Osher
, “
Spatially adaptive techniques for level set methods and incompressible flow
,”
Comput. Fluids
35
,
995
1010
(
2006
).
28.
K.
Luo
,
C.
Shao
,
Y.
Yang
, and
J.
Fan
, “
A mass conserving level set method for detailed numerical simulation of liquid atomization
,”
J. Comput. Phys.
298
,
495
519
(
2015
).
29.
Y.
Wang
,
C.
Shu
, and
C. J.
Teo
, “
Development of LBGK and incompressible LBGK-based lattice Boltzmann flux solvers for simulation of incompressible flows
,”
Int. J. Numer. Methods Fluids
75
,
344
364
(
2014
).
30.
T.
Lee
and
C.-L.
Lin
, “
A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio
,”
J. Comput. Phys.
206
,
16
47
(
2005
).
31.
T.
Lee
and
L.
Liu
, “
Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces
,”
J. Comput. Phys.
229
,
8045
8063
(
2010
).
32.
J.-U.
Brackbill
,
D.-B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
33.
Y.-C.
Chang
,
T.-Y.
Hou
,
B.
Merriman
, and
S.
Osher
, “
A level set formulation of Eulerian interface capturing methods for incompressible fluid flows
,”
J. Comput. Phys.
124
,
449
464
(
1996
).
34.
J.-J.
Xu
,
Y.
Yang
, and
J.
Lowengrub
, “
A level-set continuum method for two-phase flows with insoluble surfactant
,”
J. Comput. Phys.
231
,
5897
5909
(
2012
).
35.
W.-J.
Rider
and
D.-B.
Kothe
, “
Reconstructing volume tracking
,”
J. Comput. Phys.
141
,
112
152
(
1998
).
36.
H.-W.
Zheng
,
C.
Shu
, and
Y.-T.
Chew
, “
A lattice Boltzmann model for multiphase flows with large density ratio
,”
J. Comput. Phys.
218
,
353
371
(
2006
).
37.
S.
Aland
and
A.
Voigt
, “
Benchmark computations of diffuse interface models for two-dimensional bubble dynamics
,”
Int. J. Numer. Methods Fluids
69
,
747
761
(
2012
).
38.
S.
Hysing
,
S.
Turek
,
D.
Kuzmin
,
N.
Parolini
,
E.
Burman
,
S.
Ganesan
, and
L.
Tobiska
, “
Quantitative benchmark computations of two-dimensional bubble dynamics
,”
Int. J. Numer. Methods Fluids
60
,
1259
1288
(
2009
).
39.
J.-L.
Guermond
and
L.
Quartapelle
, “
A projection FEM for variable density incompressible flows
,”
J. Comput. Phys.
165
,
167
188
(
2000
).
You do not currently have access to this content.