This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.

1.
R.
Abgrall
and
S.
Karni
, “
Computations of compressible multifluids
,”
J. Comput. Phys.
169
,
594
623
(
2001
).
2.
I. L.
Chern
,
J.
Glimm
,
O.
Mcbryan
,
B.
Plohr
, and
S.
Yaniv
, “
Front tracking for gas dynamics
,”
J. Comput. Phys.
62
,
83
110
(
1986
).
3.
J. W.
Grove
and
R.
Menikoff
, “
Anomalous reflection of a shock wave at a fluid interface
,”
J. Fluid Mech.
219
,
313
336
(
1990
).
4.
R. J.
LeVeque
and
K.-M.
Shyue
, “
Two-dimensional front tracking based on high resolution wave propagation methods
,”
J. Comput. Phys.
123
,
354
368
(
1996
).
5.
R. L.
Holmes
,
J. W.
Grove
, and
D. H.
Sharp
, “
Numerical investigation of Richtmyer-Meshkov instability using front tracking
,”
J. Fluid Mech.
301
,
51
64
(
1995
).
6.
J.-P.
Cocchi
and
R.
Saurel
, “
A Riemann problem based method for the resolution of compressible multimaterial flows
,”
J. Comput. Phys.
137
,
265
298
(
1997
).
7.
R.
Abgrall
, “
How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach
,” Technical Report RR-2372,
INRIA
,
1994
.
8.
S.
Karni
, “
Multicomponent flow calculations by a consistent primitive algorithm
,”
J. Comput. Phys.
112
,
31
43
(
1994
).
9.
K.-M.
Shyue
, “
An efficient shock-capturing algorithm for compressible multicomponent problems
,”
J. Comput. Phys.
142
,
208
242
(
1998
).
10.
J. W.
Banks
,
D. W.
Schwendeman
,
A. K.
Kapila
, and
W. D.
Henshaw
, “
A high-resolution Godunov method for compressible multi-material flow on overlapping grids
,”
J. Comput. Phys.
223
,
262
297
(
2007
).
11.
B.
Larrouturou
, “
How to preserve the mass fractions positivity when computing compressible multi-component flows
,”
J. Comput. Phys.
95
,
59
84
(
1991
).
12.
J. J.
Quirk
and
S.
Karni
, “
On the dynamics of a shock-bubble interaction
,”
J. Fluid Mech.
318
,
129
163
(
1996
).
13.
S.
Karni
, “
Hybrid multifluid algorithms
,”
SIAM J. Sci. Comput.
17
,
1019
1039
(
1996
).
14.
W.
Mulder
,
S.
Osher
, and
J. A.
Sethian
, “
Computing interface motion in compressible gas dynamics
,”
J. Comput. Phys.
100
,
209
228
(
1992
).
15.
G.
Allaire
,
S.
Clerc
, and
S.
Kokh
, “
A five-equation model for the simulation of interfaces between compressible fluids
,”
J. Comput. Phys.
181
,
577
616
(
2002
).
16.
P.
Jenny
,
B.
Müller
, and
H.
Thomann
, “
Correction of conservative Euler solvers for gas mixtures
,”
J. Comput. Phys.
132
,
91
107
(
1997
).
17.
R. P.
Fedkiw
,
T.
Aslam
,
B.
Merriman
, and
S.
Osher
, “
A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)
,”
J. Comput. Phys.
152
,
457
492
(
1999
).
18.
R. R.
Nourgaliev
,
T. N.
Dinh
, and
T. G.
Theofanous
, “
Adaptive characteristics-based matching for compressible multifluid dynamics
,”
J. Comput. Phys.
213
,
500
529
(
2006
).
19.
H.
Terashima
and
G.
Tryggvason
, “
A front-tracking/ghost-fluid method for fluid interfaces in compressible flows
,”
J. Comput. Phys.
228
,
4012
4037
(
2009
).
20.
P.
Colella
,
H. M.
Glaz
, and
R. E.
Ferguson
, “
Multifluid algorithms for Eulerian finite difference methods
,” preprint (
1989
), see http://seesar.lbl.gov/anag/publications/colella/Phil1991.pdf.
21.
G. H.
Miller
and
E. G.
Puckett
, “
A high-order Godunov method for multiple condensed phases
,”
J. Comput. Phys.
128
,
134
164
(
1996
).
22.
V. T.
Ton
, “
Improved shock-capturing methods for multicomponent and reacting flows
,”
J. Comput. Phys.
128
,
237
253
(
1996
).
23.
V.
Dyadechko
and
M.
Shashkov
, “
Moment-of-fluid interface reconstruction
,” Technical Report LA-UR-05-7571,
Los Alamos National Laboratory
,
October 2005
.
24.
K.
Xu
, “
BGK-based scheme for multicomponent flow calculations
,”
J. Comput. Phys.
134
,
122
133
(
1997
).
25.
H. T.
Ahn
,
M.
Shashkov
, and
M. A.
Christon
, “
The moment-of-fluid method in action
,”
Commun. Numer. Methods Eng.
25
,
1009
1018
(
2009
).
26.
J. R.
Kamm
and
M. J.
Shashkov
, “
A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamics based on the Riemann problem
,”
Commun. Comput. Phys.
7
,
927
976
(
2010
).
27.
C. W.
Hirt
,
A. A.
Amsden
, and
J. L.
Cook
, “
An arbitrary Lagrangian-Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
14
,
227
253
(
1974
).
28.
S.
Galera
,
P.-H.
Maire
, and
J.
Breil
, “
A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction
,”
J. Comput. Phys.
229
,
5755
5787
(
2010
).
29.
M. M.
Francois
,
M. J.
Shashkov
,
T. O.
Masser
, and
E. D.
Dendy
, “
A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation
,”
Comput. Fluids
83
,
126
136
(
2013
).
30.
R.
Saurel
,
E.
Franquet
,
E.
Daniel
, and
O.
Le Metayer
, “
A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations
,”
J. Comput. Phys.
223
,
822
845
(
2007
).
31.
T. Y.
Hou
and
P. G.
LeFloch
, “
Why nonconservative schemes converge to wrong solutions: Error analysis
,”
Math. Comput.
62
,
497
530
(
1994
).
32.
M.
Ben-Artzi
,
J.
Li
, and
G.
Warnecke
, “
A direct Eulerian GRP scheme for compressible fluid flows
,”
J. Comput. Phys.
218
,
19
43
(
2006
).
33.
M.
Ben-Artzi
and
J.
Falcovitz
,
Generalized Riemann Problems in Computational Fluid Dynamics
(
Cambridge University Press
,
2003
).
34.
J.
Li
and
Y.
Wang
, “
Thermodynamical effects and high resolution methods for compressible fluid flows
,”
J. Comput. Phys.
343
,
340
354
(
2017
).
35.
C.-H.
Chang
and
M.-S.
Liou
, “
A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme
,”
J. Comput. Phys.
225
,
840
873
(
2007
).
36.
R.
Abgrall
and
S.
Karni
, “
A comment on the computation of non-conservative products
,”
J. Comput. Phys.
229
,
2759
2763
(
2010
).
37.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics
(
Springer
,
Berlin, Heidelberg
,
1997
).
38.
B.
van Leer
, “
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method
,”
J. Comput. Phys.
32
,
101
136
(
1979
).
39.
J.-F.
Haas
and
B.
Sturtevant
, “
Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
,”
J. Fluid Mech.
181
,
41
76
(
1987
).
40.
A.
Bagabir
and
D.
Drikakis
, “
Mach number effects on shock-bubble interaction
,”
Shock Waves
11
,
209
218
(
2001
).
41.
C.
Tomkins
,
K.
Prestridge
,
P.
Rightley
,
M.
Marr-Lyon
,
P.
Vorobieff
, and
R.
Benjamin
, “
A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders
,”
Phys. Fluids
15
,
986
1004
(
2003
).
42.
S.
Kumar
,
G.
Orlicz
,
C.
Tomkins
,
C.
Goodenough
,
K.
Prestridge
,
P.
Vorobieff
, and
R.
Benjamin
, “
Stretching of material lines in shock-accelerated gaseous flows
,”
Phys. Fluids
17
,
082107
(
2005
).
43.
S.
Kumar
,
P.
Vorobieff
,
G.
Orlicz
,
A.
Palekar
,
C.
Tomkins
,
C.
Goodenough
,
M.
Marr-Lyon
,
K. P.
Prestridge
, and
R. F.
Benjamin
, “
Complex flow morphologies in shock-accelerated gaseous flows
,”
Phys. D
235
,
21
28
(
2007
).
44.
S.
Shankar
,
S.
Kawai
, and
S.
Lele
, “
Numerical simulation of multicomponent shock accelerated flows and mixing using localized artificial diffusivity method
,” in
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
American Institute of Aeronautics and Astronautics
,
2010
).
45.
C.
Tomkins
,
S.
Kumar
,
G.
Orlicz
, and
K.
Prestridge
, “
An experimental investigation of mixing mechanisms in shock-accelerated flow
,”
J. Fluid Mech.
611
,
131
150
(
2008
).
46.
M.
Fan
,
Z.
Zhai
,
T.
Si
,
X.
Luo
,
L.
Zou
, and
D.
Tan
, “
Numerical study on the evolution of the shock-accelerated SF6 interface: Influence of the interface shape
,”
Sci. China: Phys., Mech. Astron.
55
,
284
296
(
2012
).
47.
R.
Menikoff
and
B. J.
Plohr
, “
The Riemann problem for fluid flow of real materials
,”
Rev. Mod. Phys.
61
,
75
130
(
1989
).
48.
X.
Chen
,
Y.
Zhu
, and
C. B.
Lee
, “
Interactions between second mode and low-frequency waves in a hypersonic boundary layer
,”
J. Fluid Mech.
820
,
693
735
(
2017
).
49.
C. B.
Lee
and
J. Z.
Wu
, “
Transition in wall-bounded flows
,”
Appl. Mech. Rev.
61
,
030802
(
2008
).
50.
C. B.
Lee
and
S.
Fu
, “
On the formation of the chain of ring-like vortices in a transitional boundary layer
,”
Exp. Fluids
30
,
354
357
(
2001
).
You do not currently have access to this content.