Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

1.
S.
Papell
, U.S. patent 3,215,572 (
2 November 1965
).
2.
R.
Turcu
,
I.
Craciunescu
,
V. M.
Garamus
,
C.
Janko
,
S.
Lyer
, and
R.
Tietze
, “
Magnetic microgels for drug targeting applications: Physical–chemical properties and cytotoxicity evaluation
,”
J. Magn. Magn. Mater.
380
,
307
314
(
2015
).
3.
J.
Xie
,
D. C.
Li
, and
Y.
Xing
, “
The theoretical and experimental research of the horizontal magnetic fluid pressure difference sensor
,”
Sens. Actuators, A
236
,
315
322
(
2015
).
4.
J. V.
Timonen
,
M.
Latikka
,
L.
Leibler
,
R. H.
Ras
, and
O.
Ikkala
, “
Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces
,”
Science
341
,
253
257
(
2013
).
5.
L.
He
,
Y.
Hu
,
H.
Kim
,
J.
Ge
,
S.
Kwon
, and
Y.
Yin
, “
Magnetic assembly of nonmagnetic particles into photonic crystal structures
,”
Nano Lett.
10
,
4708
(
2010
).
6.
R. A.
Medina-Esquivel
,
C.
Vales-Pinzon
,
G.
Quiñones-Weiss
,
M. A.
Zambrano-Arjona
,
J. A.
Mendez-Gamboa
, and
C.
Cab
, “
Thermal conductivity of a diamond magnetite composite fluid under the effect of a uniform magnetic field
,”
Diamond Relat. Mater.
53
,
45
51
(
2015
).
7.
Y.
Iwamoto
,
A.
Yoshioka
,
T.
Naito
,
J.
Cuya
,
Y.
Ido
, and
R.
Okawa
, “
Field induced anisotropic thermal conductivity of silver nanowire dispersed-magnetic functional fluid
,”
Exp. Therm. Fluid Sci.
79
,
111
117
(
2016
).
8.
X.
Peng
,
Y.
Min
,
T.
Ma
,
W.
Luo
, and
M.
Yan
, “
Two-dimensional Monte Carlo simulations of a suspension comprised of magnetic and nonmagnetic particles in gradient magnetic fields
,”
J. Magn. Magn. Mater.
321
,
1221
1226
(
2009
).
9.
Y.
Ido
,
Y. H.
Li
, and
H.
Tsutsumi
, “
Magnetic microchains and microswimmers in an oscillating magnetic field
,”
Biomicrofluidics
10
,
011902
(
2016
).
10.
Y.
Ido
,
H.
Sumiyoshi
, and
H.
Tsutsumi
, “
Simulations of behavior of magnetic particles in magnetic functional fluids using a hybrid method of lattice Boltzmann method, immersed boundary method and discrete particle method
,”
Comput. Fluids
142
,
86
95
(
2017
).
11.
G. M.
Whitesides
and
B.
Grzybowski
, “
Self-assembly at all scales
,”
Science
295
,
2418
2421
(
2002
).
12.
S.
Jakubith
,
H. H.
Rotermund
,
W.
Engel
,
O. A.
Von
, and
G.
Ertl
, “
Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence
,”
Phys. Rev. Lett.
65
,
3013
3016
(
1990
).
13.
H. R.
Vutukuri
,
F.
Smallenburg
,
S.
Badaire
,
A.
Imhof
,
M.
Dijkstra
, and
B. A.
Van
, “
An experimental and simulation study on the self-assembly of colloidal cubes in external electric fields
,”
Soft Matter
10
,
9110
9119
(
2014
).
14.
C. S.
Peskin
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
,
220
252
(
1977
).
15.
C. Y.
Lim
,
C.
Shu
,
X. D.
Niu
, and
Y. T.
Chew
, “
Application of lattice Boltzmann method to simulate microchannel flows
,”
Phys. Fluids
14
,
2299
2308
(
2002
).
16.
X. D.
Niu
,
C.
Shu
, and
Y. T.
Chew
, “
A lattice Boltzmann BGK model for simulation of micro flows
,”
Europhys. Lett.
67
,
600
606
(
2004
).
17.
X. D.
Niu
,
C.
Shu
,
Y. T.
Chew
, and
Y.
Peng
, “
A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows
,”
Phys. Lett. A
354
,
173
182
(
2006
).
18.
X. D.
Niu
,
H.
Yamaguchi
, and
K.
Yoshikawa
, “
Lattice Boltzmann model for simulating temperature-sensitive ferrofluids
,”
Phys. Rev. E
79
,
046713
(
2009
).
19.
M. F.
Chen
,
X.
Li
,
X. D.
Niu
,
Y.
Li
,
A.
Khan
, and
H.
Yamaguchi
, “
Sedimentation of two non-magnetic particles in magnetic fluid
,”
Acta Phys. Sin.
66
,
164703
(
2017
).
20.
C. W.
Hirt
and
F. H.
Harlow
, “
A general corrective procedure for the numerical solution of initial-value problems
,”
J. Comput. Phys.
2
,
114
119
(
1967
).
21.
H.
Araseki
and
S.
Kotake
, “
A self-correcting procedure for computational liquid metal magnetohydrodynamics
,”
J. Comput. Phys.
110
,
301
309
(
1994
).
22.
P.
Desjonqueres
,
G.
Gouesbet
,
A.
Berlemont
, and
A.
Picart
, “
Dispersion of discrete particles by continuous turbulent motions: New results and discussions
,”
Phys. Fluids
29
(
7
),
2147
2151
(
1986
).
23.
T.
Fujita
and
M.
Mamiya
, “
Interaction forces between nonmagnetic particles in the magnetized magnetic fluid
,”
J. Magn. Magn. Mater.
65
,
207
210
(
1987
).
24.
Y.
Hu
,
D. C.
Li
,
S.
Shu
, and
X. D.
Niu
, “
Simulation of steady fluid–solid conjugate heat transfer problems via immersed boundary-lattice Boltzmann method
,”
Comput. Math. Appl.
70
,
2227
2237
(
2015
).
25.
K.
Wormuth
, “
Superparamagnetic latex via inverse emulsion polymerization
,”
J. Colloid Interface Sci.
241
,
366
377
(
2001
).
26.
E. M.
Furst
and
A. P.
Gast
, “
Micromechanics of magnetorheological suspensions
,”
Phys. Rev. E
61
,
6732
6739
(
2000
).
You do not currently have access to this content.