Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor’s particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

1.
C.
Seife
, “
Can the laws of physics be unified?
,”
Science
309
(
5731
),
82
(
2005
).
2.
G. I.
Taylor
, “
Diffusion by continuous movements
,”
Proc. London Math. Soc.
s2-20
,
196
(
1921
).
3.
C.
Crowe
,
T.
Troutt
, and
J.
Chung
, “
Numerical models for two-phase turbulent flows
,”
Annu. Rev. Fluid Mech.
28
,
11
43
(
1996
).
4.
M.
Pinsky
and
A.
Khain
, “
Turbulence effects on droplet growth and size distribution in clouds—A review
,”
J. Aerosol Sci.
28
,
1177
1214
(
1997
).
5.
R. A.
Shaw
, “
Particle-turbulence interactions in atmospheric clouds
,”
Annu. Rev. Fluid Mech.
35
,
183
227
(
2003
).
6.
S.
Balachandar
and
J. K.
Eaton
, “
Turbulent dispersed multiphase flow
,”
Annu. Rev. Fluid Mech.
42
,
111
133
(
2010
).
7.
J. O.
Hinze
,
Turbulence
, 2nd ed. (
McGraw-Hill
,
New York
,
1975
).
8.
M. I.
Yudine
, “
Physical considerations on heavy-particle dispersion
,”
Adv. Geophys.
6
,
185
191
(
1959
).
9.
L.-P.
Wang
and
D. E.
Stock
, “
Dispersion of heavy-particles by turbulent motion
,”
J. Atmos. Sci.
50
,
1897
1913
(
1993
).
10.
J.
Pozorski
and
J. P.
Minier
, “
On the Lagrangian turbulent dispersion models based on the Langevin equation
,”
Int. J. Multiphase Flow
24
,
913
945
(
1998
).
11.
J. J.
Riley
and
G. S.
Patterson
, “
Diffusion experiments with numerically integrated isotropic turbulence
,”
Phys. Fluids A
17
,
292
297
(
1974
).
12.
K.
Squires
and
J. K.
Eaton
, “
Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence
,”
J. Fluid Mech.
226
,
1
35
(
1991
).
13.
S.
Elghobashi
and
G. C.
Truesdell
, “
Direct simulation of particle dispersion in a decaying isotropic turbulence
,”
J. Fluid Mech.
242
,
655
700
(
1992
).
14.
Z.
He
,
Z.
Liu
,
S.
Chen
,
L.
Weng
, and
C.
Zheng
, “
Particle behavior in homogeneous isotropic turbulence
,”
Acta Mech. Sin.
21
,
112
120
(
2005
).
15.
M.
Cencini
,
J.
Bec
,
L.
Biferale
,
G.
Boffetta
,
A.
Celani
,
A. S.
Lanotte
,
S.
Musacchio
, and
F.
Toschi
, “
Dynamics and statistics of heavy particles in turbulent flows
,”
J. Turbul.
7
,
N36
(
2006
).
16.
J.
Bec
,
L.
Biferale
,
G.
Boffetta
,
A.
Celani
,
M.
Cencini
,
A. S.
Lanotte
,
S.
Musacchio
, and
F.
Toschi
, “
Acceleration statistics of heavy particles in turbulence
,”
J. Fluid Mech.
550
,
349
358
(
2006
).
17.
J.
Jung
,
K.
Yeo
, and
C.
Lee
, “
Behavior of heavy particles in isotropic turbulence
,”
Phys. Rev. E
77
,
016307
(
2008
).
18.
S.
Wetchagarun
and
J. J.
Riley
, “
Dispersion and temperature statistics of inertial particles in isotropic turbulence
,”
Phys. Fluids
22
,
063301
(
2010
).
19.
G. C.
Truesdell
and
S.
Elghobashi
, “
On the two-way interaction between homogeneous turbulence and dispersed solid particles. II: Particle dispersion
,”
Phys. Fluids
6
(
3
),
1405
1407
(
1994
).
20.
A. H.
Abdelsamie
and
C.
Lee
, “
Decaying versus stationary turbulence in particle-laden isotropic turbulence: Heavy particle statistics modifications
,”
Phys. Fluids
25
,
033303
(
2013
).
21.
A. M.
Ahmed
and
S.
Elghobashi
, “
Direct numerical simulation of particle dispersion in homogeneous turbulent shear flows
,”
Phys. Fluids
13
,
3346
3364
(
2001
).
22.
C.
Marchioli
,
M.
Picciotto
, and
A.
Soldati
, “
Particle dispersion and wall-dependent turbulent flow scales: Implications for local equilibrium models
,”
J. Turbul.
7
,
N60
(
2006
).
23.
H.
Xia
,
N.
Francois
,
H.
Punzmann
, and
M.
Shats
, “
Lagrangian scale of particle dispersion in turbulence
,”
Nat. Commun.
4
,
3013
(
2013
).
24.
H.
Xia
,
N.
Francois
,
H.
Punzmann
, and
M.
Shats
, “
Taylor particle dispersion during transition to fully developed two-dimensional turbulence
,”
Phys. Rev. Lett.
112
,
104501
(
2014
).
25.
M.
Samimy
and
S. K.
Lele
, “
Motion of particles with inertia in a compressible free shear layer
,”
Phys. Fluids A
3
,
1915
(
1991
).
26.
F.
Mashayek
and
F. A.
Jaberi
, “
Particle dispersion in forced isotropic low-Mach-number turbulence
,”
Int. J. Heat Mass Transfer
42
,
2823
2836
(
1999
).
27.
Y.
Yang
,
J.
Wang
,
Y.
Shi
,
Z.
Xiao
,
X.-T.
He
, and
S.
Chen
, “
Acceleration of passive tracers in compressible turbulent flow
,”
Phys. Rev. Lett.
110
,
064503
(
2013
).
28.
Y.
Yang
,
J.
Wang
,
Y.
Shi
,
Z.
Xiao
,
X.-T.
He
, and
S.
Chen
, “
Interactions between inertial particles and shocklets in compressible turbulent flow
,”
Phys. Fluids
26
,
091702
(
2014
).
29.
Q.
Zhang
,
H.
Liu
,
Z.
Ma
, and
Z.
Xiao
, “
Preferential concentration of heavy particles in compressible isotropic turbulence
,”
Phys. Fluids
28
,
055104
(
2016
).
30.
J.
Wang
,
L.-P.
Wang
,
Z.
Xiao
,
Y.
Shi
, and
S.
Chen
, “
A hybrid numerical simulation of isotropic compressible turbulence
,”
J. Comput. Phys.
229
,
5257
5279
(
2010
).
31.
J.
Wang
,
Y.
Shi
,
L.-P.
Wang
,
Z.
Xiao
,
X.-T.
He
, and
S.
Chen
, “
Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence
,”
Phys. Fluids
23
,
125103
(
2011
).
32.
M. R.
Petersen
and
D.
Livescu
, “
Forcing for statistically stationary compressible isotropic turbulence
,”
Phys. Fluids
22
,
116101
(
2010
).
33.
M.
Parmar
,
A.
Haselbacher
, and
S.
Balachandar
, “
Equation of motion for a sphere in non-uniform compressible flows
,”
J. Fluid Mech.
699
,
352
375
(
2012
).
34.
Y.
Ling
,
M.
Parmar
, and
S.
Balachandar
, “
A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows
,”
Int. J. Multiphase Flow
57
,
102
114
(
2013
).
35.
E.
Loth
, “
Compressibility and rarefaction effects on drag of a spherical particle
,”
AIAA J.
46
,
2219
2228
(
2008
).
36.
L.-P.
Wang
and
M. R.
Maxey
, “
Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence
,”
J. Fluid Mech.
256
,
27
68
(
1993
).
37.
S.
Kawai
and
S.
Lele
, “
Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes
,”
J. Comput. Phys.
227
(
22
),
9498
9526
(
2008
).
38.
S.
Kawai
,
S. K.
Shankar
, and
S.
Lele
, “
Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows
,”
J. Comput. Phys.
229
(
5
),
1739
1762
(
2010
).
39.
H.
Liu
and
Z.
Xiao
, “
Scale-to-scale energy transfer in mixing flow induced by the Richtmyer-Meshkov instability
,”
Phys. Rev. E
93
,
053112
(
2016
).
40.
J. P. L. C.
Salazar
and
L. R.
Collins
, “
Inertial particle relative velocity statistics in homogeneous isotropic turbulence
,”
J. Fluid Mech.
696
,
45
66
(
2012
).
You do not currently have access to this content.