The flow over object problems are studied by a nodal discontinuous Galerkin-lattice Boltzmann method (NDG-LBM) in this work. Different from the standard lattice Boltzmann method, the current method applies the nodal discontinuous Galerkin method into the streaming process in LBM to solve the resultant pure convection equation, in which the spatial discretization is completed on unstructured grids and the low-storage explicit Runge-Kutta scheme is used for time marching. The present method then overcomes the disadvantage of standard LBM for depending on the uniform meshes. Moreover, the collision process in the LBM is completed by using the multiple-relaxation-time scheme. After the validation of the NDG-LBM by simulating the lid-driven cavity flow, the simulations of flows over a fixed circular cylinder, a stationary airfoil and rotating-stationary cylinders are performed. Good agreement of present results with previous results is achieved, which indicates that the current NDG-LBM is accurate and effective for flow over object problems.

1.
C. K.
Aidun
and
J. R.
Clausen
, “
Lattice-Boltzmann method for complex flows
,”
Annu. Rev. Fluid Mech.
42
,
439
472
(
2010
).
2.
Y. H.
Qian
,
D.
D’Humières
, and
P.
Lallemand
, “
Lattice BGK models for Navier-Stokes equation
,”
Europhys. Lett.
17
,
479
484
(
1992
).
3.
T.
Abe
, “
Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation
,”
J. Comput. Phys.
131
,
241
246
(
1997
).
4.
R.
Mei
and
W.
Shyy
, “
On the finite difference-based lattice Boltzmann method in curvilinear coordinates
,”
J. Comput. Phys.
143
,
426
448
(
1998
).
5.
V.
Sofonea
and
R. F.
Sekerka
, “
Viscosity of finite difference lattice Boltzmann models
,”
J. Comput. Phys.
184
,
422
434
(
2003
).
6.
H.
Xi
,
G.
Peng
, and
S. H.
Chou
, “
Finite-volume lattice Boltzmann method
,”
Phys. Rev. E
59
,
6202
6205
(
1999
).
7.
D. V.
Patil
and
K. N.
Lakshmisha
, “
Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh
,”
J. Comput. Phys.
228
,
5262
5279
(
2009
).
8.
T.
Lee
and
C. L.
Lin
, “
A characteristic Galerkin method for discrete Boltzmann equation
,”
J. Comput. Phys.
171
,
336
356
(
2001
).
9.
Y.
Li
,
E. J.
LeBoeuf
, and
P. K.
Basu
, “
Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh
,”
Phys. Rev. E
72
,
046711
(
2005
).
10.
B.
Cockburn
and
C. W.
Shu
, “
Runge-Kutta discontinuous Galerkin methods for convection-dominated problems
,”
J. Sci. Comput.
16
,
173
261
(
2001
).
11.
F.
Bassi
and
S.
Rebay
, “
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations
,”
J. Comput. Phys.
131
,
267
279
(
1997
).
12.
K.
Shahbazi
,
P. F.
Fischer
, and
C. R.
Ethier
, “
A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations
,”
J. Comput. Phys.
222
,
391
407
(
2007
).
13.
E.
Ferrer
and
R. H. J.
Willden
, “
A high order discontinuous Galerkin-Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes
,”
J. Comput. Phys.
231
,
7037
7056
(
2012
).
14.
M. A.
Kopera
and
F. X.
Giraldo
, “
Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations
,”
J. Comput. Phys.
275
,
92
117
(
2014
).
15.
X.
Shi
,
J.
Lin
, and
Z.
Yu
, “
Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element
,”
Int. J. Numer. Methods Fluids
42
,
1249
1261
(
2003
).
16.
A.
Duster
,
L.
Demkowicz
, and
E.
Rank
, “
High-order finite elements applied to the discrete Boltzmann equation
,”
Int. J. Numer. Methods Fluids
67
,
1094
1121
(
2006
).
17.
M.
Min
and
T.
Lee
, “
A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows
,”
J. Comput. Phys.
230
,
245
259
(
2011
).
18.
J. S.
Hesthaven
and
T.
Warburton
,
Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications
(
Springer Publishing Company
,
2008
).
19.
A.
Alekseenko
and
E.
Josyula
, “
Deterministic solution of the spatially homogeneous Boltzmann equation using discontinuous Galerkin discretizations in the velocity space
,”
J. Comput. Phys.
272
,
170
188
(
2014
).
20.
A.
Zadehgol
,
M.
Ashrafizaadeh
, and
S. H.
Musavi
, “
A nodal discontinuous Galerkin lattice Boltzmann method for fluid flow problems
,”
Comput. Fluids
105
,
58
65
(
2014
).
21.
P.
Lallemand
and
L. S.
Luo
, “
Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability
,”
Phys. Rev. E
61
,
6546
6562
(
2000
).
22.
Z. L.
Guo
and
C.
Shu
,
Lattice Boltzmann Method and Its Applications in Engineering
(
World Scientific
,
2013
).
23.
U.
Ghia
,
K.
Ghia
, and
C.
Shin
, “
High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
,
387
411
(
1982
).
24.
P. M.
Gresho
,
S. T.
Chan
,
R. L.
Lee
, and
C. D.
Upson
, “
A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations. Part 2: Applications
,”
Int. J. Numer. Methods Fluids
4
,
619
640
(
1984
).
25.
S.
Kang
, “
Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers
,”
Phys. Fluids
15
,
2486
2498
(
2003
).
26.
M. C.
Lai
and
C. S.
Peskin
, “
An immersed boundary method with formal second-order accuracy and reduced numerical viscosity
,”
J. Comput. Phys.
160
,
705
719
(
2000
).
27.
J.
Wu
and
C.
Shu
, “
Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications
,”
J. Comput. Phys.
228
,
1963
1979
(
2009
).
28.
S.
Mittal
and
T. E.
Tezduyar
, “
Massively parallel finite element computation of incompressible flows involving fluid-body interactions
,”
Comput. Methods Appl. Mech. Eng.
112
,
253
282
(
1994
).
You do not currently have access to this content.