High consumption of memory and computational effort is the major barrier to prevent the widespread use of the discrete velocity method (DVM) in the simulation of flows in all flow regimes. To overcome this drawback, an implicit DVM with a memory reduction technique for solving a steady discrete velocity Boltzmann equation (DVBE) is presented in this work. In the method, the distribution functions in the whole discrete velocity space do not need to be stored, and they are calculated from the macroscopic flow variables. As a result, its memory requirement is in the same order as the conventional Euler/Navier-Stokes solver. In the meantime, it is more efficient than the explicit DVM for the simulation of various flows. To make the method efficient for solving flow problems in all flow regimes, a prediction step is introduced to estimate the local equilibrium state of the DVBE. In the prediction step, the distribution function at the cell interface is calculated by the local solution of DVBE. For the flow simulation, when the cell size is less than the mean free path, the prediction step has almost no effect on the solution. However, when the cell size is much larger than the mean free path, the prediction step dominates the solution so as to provide reasonable results in such a flow regime. In addition, to further improve the computational efficiency of the developed scheme in the continuum flow regime, the implicit technique is also introduced into the prediction step. Numerical results showed that the proposed implicit scheme can provide reasonable results in all flow regimes and increase significantly the computational efficiency in the continuum flow regime as compared with the existing DVM solvers.

1.
R. C.
Blanchard
,
R. G.
Wilmoth
, and
J. N.
Moss
, “
Aerodynamic flight measurements and rarefied-flow simulations of Mars entry vehicles
,”
J. Spacecr. Rockets
34
,
687
690
(
1997
).
2.
Z. H.
Li
and
H. X.
Zhang
, “
Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry
,”
J. Comput. Phys.
228
,
1116
1138
(
2009
).
3.
C.
White
,
C.
Colombo
,
T. J.
Scanlon
,
C. R.
McInnes
, and
J. M.
Reese
, “
Rarefied gas effects on the aerodynamics of high area-to-mass ratio spacecraft in orbit
,”
Adv. Space Res.
51
,
2112
2124
(
2013
).
4.
J.
Fan
and
C.
Shen
, “
Statistical simulation of low-speed rarefied gas flows
,”
J. Comput. Phys.
167
,
393
412
(
2001
).
5.
B.
John
,
X. J.
Gu
, and
D. R.
Emerson
, “
Investigation of heat and mass transfer in a lid-driven cavity under non-equilibrium flow conditions
,”
Numer. Heat Transfer, Part B
58
,
287
303
(
2010
).
6.
S. Z.
Chen
,
K.
Xu
, and
C. B.
Lee
, “
The dynamic mechanism of a moving Crookes radiometer
,”
Phys. Fluids
24
,
111701
(
2012
).
7.
J. E.
Broadwell
, “
Shock structure in a simple discrete velocity gas
,”
Phys. Fluids
7
,
1243
1247
(
1964
).
8.
L.
Mieussens
, “
Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries
,”
J. Comput. Phys.
162
,
429
466
(
2000
).
9.
S. Z.
Chen
,
K.
Xu
,
C. B.
Li
, and
Q. D.
Cai
, “
A unified gas kinetic scheme with moving mesh and velocity space adaptation
,”
J. Comput. Phys.
231
,
6643
6664
(
2012
).
10.
L. M.
Yang
,
C.
Shu
,
J.
Wu
, and
Y.
Wang
, “
Comparative study of discrete velocity method and high-order lattice Boltzmann method for simulation of rarefied flows
,”
Comput. Fluids
146
,
125
142
(
2017
).
11.
J. Y.
Yang
and
J. C.
Huang
, “
Rarefied flow computations using nonlinear model Boltzmann equations
,”
J. Comput. Phys.
120
,
323
339
(
1995
).
12.
M.
Bennoune
,
M.
Lemou
, and
L.
Mieussens
, “
Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics
,”
J. Comput. Phys.
227
,
3781
3803
(
2008
).
13.
F.
Filbet
and
S.
Jin
, “
A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources
,”
J. Comput. Phys.
229
,
7625
7648
(
2010
).
14.
S.
Chen
and
K.
Xu
, “
A comparative study of an asymptotic preserving scheme and unified gas-kinetic scheme in continuum flow limit
,”
J. Comput. Phys.
288
,
52
65
(
2015
).
15.
K.
Xu
and
J. C.
Huang
, “
A unified gas-kinetic scheme for continuum and rarefied flows
,”
J. Comput. Phys.
229
,
7747
7764
(
2010
).
16.
K.
Xu
,
Direct Modeling for Computational Fluid Dynamics: Construction and Application of Unified Gas-Kinetic Schemes
(
World Scientific
,
2014
).
17.
Z. L.
Guo
,
K.
Xu
, and
R. J.
Wang
, “
Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case
,”
Phys. Rev. E
88
,
033305
(
2013
).
18.
Z. L.
Guo
,
R. J.
Wang
, and
K.
Xu
, “
Discrete unified gas kinetic scheme for all Knudsen number flows: II. Thermal compressible case
,”
Phys. Rev. E
91
,
033313
(
2015
).
19.
C.
Wu
,
B. C.
Shi
,
Z. H.
Chai
, and
P.
Wang
, “
Discrete unified gas kinetic scheme with a force term for incompressible fluid flows
,”
Comput. Math. Appl.
71
,
2608
2629
(
2016
).
20.
F.
Filbet
and
G.
Russo
, “
Semi-Lagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics
,”
Kinet. Relat. Models
2
,
231
250
(
2009
).
21.
G.
Dimarco
and
L.
Pareschi
, “
Numerical methods for kinetic equations
,”
Acta Numerica
23
,
369
520
(
2014
).
22.
L. M.
Yang
,
C.
Shu
,
J.
Wu
, and
Y.
Wang
, “
Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes
,”
J. Comput. Phys.
306
,
291
310
(
2016
).
23.
C. Y.
Lim
,
C.
Shu
,
X. D.
Niu
, and
Y. T.
Chew
, “
Application of lattice Boltzmann method to simulate microchannel flows
,”
Phys. Fluids
14
,
2299
2308
(
2002
).
24.
X. D.
Niu
,
S. A.
Hyodo
,
T.
Munekate
, and
K.
Suga
, “
Kinetic lattice Boltzmann method for microscale gas flows: Issues on boundary condition, relaxation time, and regularization
,”
Phys. Rev. E
76
,
036711
(
2007
).
25.
H. B.
Huang
,
T. S.
Lee
, and
C.
Shu
, “
Lattice Boltzmann method simulation gas slip flow in long microtubes
,”
Int. J. Numer. Methods Heat Fluid Flow
17
,
587
607
(
2007
).
26.
X. W.
Shan
,
X. F.
Yuan
, and
H. D.
Chen
, “
Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation
,”
J. Fluid Mech.
550
,
413
441
(
2006
).
27.
S. H.
Kim
,
H.
Pitsch
, and
I. D.
Boyd
, “
Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers
,”
J. Comput. Phys.
227
,
8655
8671
(
2008
).
28.
J. P.
Meng
,
Y. H.
Zhang
,
N. G.
Hadjiconstantinou
,
G. A.
Radtke
, and
X. W.
Shan
, “
Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows
,”
J. Fluid Mech.
718
,
347
370
(
2013
).
29.
J. P.
Meng
and
Y. H.
Zhang
, “
Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows
,”
J. Comput. Phys.
230
,
835
849
(
2011
).
30.
K.
Aoki
,
K.
Kanba
, and
S.
Takata
, “
Numerical analysis of a supersonic rarefied gas flow past a flat plate
,”
Phys. Fluids
9
,
1144
1161
(
1997
).
31.
L.
Mieussens
, “
Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics
,”
Math. Models Methods Appl. Sci.
10
,
1121
1149
(
2000
).
32.
V. A.
Titarev
, “
Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains
,”
Comput. Math. Math. Phys.
49
,
1197
1211
(
2009
).
33.
V. A.
Titarev
, “
Implicit numerical method for computing three-dimensional rarefied gas flows on unstructured meshes
,”
Comput. Math. Math. Phys.
50
,
1719
1733
(
2010
).
34.
Y.
Zhu
,
C.
Zhong
, and
K.
Xu
, “
Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes
,”
J. Comput. Phys.
315
,
16
38
(
2016
).
35.
R. R.
Arslanbekov
,
V. I.
Kolobov
, and
A. A.
Frolova
, “
Kinetic solvers with adaptive mesh in phase space
,”
Phys. Rev. E
88
,
063301
(
2013
).
36.
C.
Baranger
,
J.
Claudel
,
N.
Hérouard
, and
L.
Mieussens
, “
Locally refined discrete velocity grids for stationary rarefied flow simulations
,”
J. Comput. Phys.
257
,
572
593
(
2014
).
37.
S.
Brull
and
L.
Mieussens
, “
Local discrete velocity grids for deterministic rarefied flow simulations
,”
J. Comput. Phys.
266
,
22
46
(
2014
).
38.
S.
Chen
,
C.
Zhang
,
L.
Zhu
, and
Z.
Guo
, “
A unified implicit scheme for kinetic model equations. Part I. Memory reduction technique
,”
Sci. Bull.
62
,
119
129
(
2017
).
39.
P. L.
Roe
, “
Approximate Riemann solvers, parameter vectors, and difference schemes
,”
J. Comput. Phys.
43
,
357
372
(
1981
).
40.
L. M.
Yang
,
C.
Shu
, and
J.
Wu
, “
A three-dimensional explicit sphere function-based gas-kinetic flux solver for simulation of inviscid compressible flows
,”
J. Comput. Phys.
295
,
322
339
(
2015
).
41.
L. M.
Yang
,
C.
Shu
, and
Y.
Wang
, “
Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows
,”
Phys. Rev. E
93
,
033311
(
2016
).
42.
K.
Xu
, “
To overcome memory barrier of kinetic solvers for non-equilibrium flow study
,”
Sci. Bull.
62
,
99
101
(
2017
).
43.
E. M.
Shakhov
, “
Generalization of the Krook kinetic relaxation equation
,”
Fluid Dyn.
3
,
95
96
(1972).
44.
C. K.
Chu
, “
Kinetic-theoretic description of shock wave formation. II
,”
Phys. Fluids
8
,
1450
1455
(
1965
).
45.
B.
Van Leer
, “
Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection
,”
J. Comput. Phys.
23
,
276
299
(
1977
).
46.
U.
Ghia
,
K. N.
Ghia
, and
C. T.
Shin
, “
High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
,
387
411
(
1982
).
47.
C. B.
Lee
and
S.
Wang
, “
Study of the shock motion in a hypersonic shock system/turbulent boundary layer interaction
,”
Exp. fluids
19
,
143
149
(
1995
).
48.
Y. D.
Zhu
,
C. H.
Zhang
,
X.
Chen
,
H. J.
Yuan
,
J. Z.
Wu
,
S. Y.
Chen
,
C. B.
Lee
, and
M.
Gad-el-Hak
, “
Transition in hypersonic boundary layers: Role of dilatational waves
,”
AIAA J.
54
,
3039
3049
(
2016
).
49.
P. B.
Yu
, “
A unified gas kinetic scheme for all Knudsen number flows
,” Ph.D. thesis,
Hong Kong University of Science and Technology
,
2013
.
You do not currently have access to this content.