The role of initial conditions in affecting the evolution toward self-similarity of an axisymmetric turbulent jet is examined. The jet’s near-field coherence was manipulated by non-circular exit geometries of identical open area, De2, including a square and a fractal exit, for comparison with a classical round orifice jet. Hot-wire anemometry and 2D-planar particle image velocimetry experiments were performed between the exit and a location 26De downstream, where the Reynolds stress profiles are self-similar. This study shows that a fractal geometry significantly changes the near-field structure of the jet, breaking up the large-scale coherent structures, thereby affecting the entrainment rate of the background fluid into the jet stream. It is found that many of the jet’s turbulent characteristics scale with the number of eddy turnover times rather than simply the streamwise coordinate, with the entrainment rate (amongst others) found to be comparable across the different jets after approximately 3-4 eddies have been overturned. The study is concluded by investigating the jet’s evolution toward a self-similar state. No differences are found for the large-scale spreading rate of the jets in the weakly self-similar region, so defined as the region for which some, but not all of the terms of the mean turbulent kinetic energy equation are self-similar. However, the dissipation rate of the turbulent kinetic energy was found to vary more gradually in x than predicted according to the classical equilibrium theories of Kolmogorov. Instead, the dissipation was found to vary in a non-equilibrium fashion for all three jets tested.

1.
Aleyasin
,
S. S.
,
Tachie
,
M. F.
, and
Koupriyanov
,
M.
, “
PIV measurements in the near and intermediate field regions of jets issuing from eight different nozzle geometries
,”
Flow, Turbul. Combust.
99
(
2
),
329
351
(
2017
).
2.
Antonia
,
R. A.
,
Browne
,
L. W. B.
,
Rajagopalan
,
S.
, and
Chambers
,
A. J.
, “
On the organized motion of a turbulent plane jet
,”
J. Fluid Mech.
134
,
49
66
(
1983
).
3.
Antonia
,
R. A.
,
Chambers
,
A. J.
,
Britz
,
D.
, and
Browne
,
L. W. B.
, “
Organized structures in a turbulent plane jet: Topology and contribution to momentum and heat transport
,”
J. Fluid Mech.
172
,
211
229
(
1986
).
4.
Antonia
,
R. A.
and
Zhao
,
Q.
, “
Effect of initial conditions on a circular jet
,”
Exp. Fluids
31
,
319
323
(
2001
).
5.
Breda
,
M.
and
Buxton
,
O. R. H.
, “
Near and far-field analysis of an axisymmetric fractal-forced turbulent jet
,” in
Progress in Turbulence VII
, 1st ed. (
Springer
,
2017
), Chap. IV, pp.
211
217
.
6.
Breda
,
M.
and
Buxton
,
O. R. H.
, “
Effects of multiscale geometry on the large-scale coherent structures of an axisymmetric turbulent jet
,”
J. Visualization
(published online
2018
).
7.
Brown
,
G. L.
and
Roshko
,
A.
, “
On density effects and large structure in turbulent mixing layers
,”
J. Fluid Mech.
64
,
775
816
(
1974
).
8.
Burattini
,
P.
,
Antonia
,
R. A.
, and
Danaila
,
L.
, “
Similarity in the far field of a turbulent round jet
,”
Phys. Fluids
17
,
025101
(
2005a
).
9.
Burattini
,
P.
,
Lavoie
,
P.
, and
Antonia
,
R. A.
, “
On the normalized turbulent energy dissipation rate
,”
Phys. Fluids
17
,
098103
(
2005b
).
10.
Buxton
,
O. R. H.
,
Laizet
,
S.
, and
Ganapathisubramani
,
B.
, “
The effects of resolution and noise on kinematic features of fine-scale turbulence
,”
Exp. Fluids
51
,
1417
1437
(
2011
).
11.
Cafiero
,
G.
,
Discetti
,
S.
, and
Astarita
,
T.
, “
Flow field features of the near-wake of jets with fractal inserts
,”
Phys. Fluids
27
,
115103
(
2015
).
12.
Chao
,
J. L.
and
Sandborn
,
V. A.
, “
Evaluation of the momentum equation for a turbulent wall jet
,”
J. Fluid Mech.
26
,
819
828
(
1966
).
13.
da Silva
,
C. B.
,
Hunt
,
J. C. R.
,
Eames
,
I.
, and
Westerweel
,
J.
, “
Interfacial layers between regions of different turbulence intensity
,”
Annu. Rev. Fluid Mech.
46
(
1
),
567
590
(
2014
).
14.
Dairay
,
T.
,
Obligado
,
M.
, and
Vassilicos
,
J. C.
, “
Non-equilibrium scaling laws in axisymmetric turbulent wakes
,”
J. Fluid Mech.
781
,
166
195
(
2015
).
15.
Friehe
,
C. A.
,
Van Atta
,
C. W.
, and
Gibson
,
C. H.
, “
Jet turbulence: Dissipation rate measurements and correlations
,” in
Turbulence Shear Flows, AGARD Conference Proceedings
(
AGARD
,
1972
), Vol. 93, pp.
1
7
.
16.
Ganapathisubramani
,
B.
,
Lakshminarasimhan
,
K.
, and
Clemens
,
N. T.
, “
Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet
,”
Exp. Fluids
42
,
923
939
(
2007
).
17.
George
,
W. K.
, “
The self-preservation of turbulent flows and its relation to initial conditions and coherent structures
,” in
Advances in Tubulence
, edited by W. K. George and R. Arndt (
Hemisphere
,
1989
), pp
39
72
.
18.
George
,
W. K.
and
Hussein
,
H. J.
, “
Locally axisymmetric turbulence
,”
J. Fluid Mech.
233
,
1
23
(
1991
).
19.
Gibson
,
M. M.
, “
Spectra of turbulence in a round jet
,”
J. Fluid Mech.
15
,
161
173
(
1963
).
20.
Goto
,
S.
and
Vassilicos
,
J. C.
, “
Energy dissipation and flux laws for unsteady turbulence
,”
Phys. Lett. A
379
,
1144
1148
(
2015
).
21.
Grinstein
,
F. F.
, “
Vortex dynamics and entrainment in rectangular free jets
,”
J. Fluid Mech.
437
,
69
101
(
2001
).
22.
Hearst
,
R. J.
and
Lavoie
,
P.
, “
Decay of turbulence generated by a square-fractal-element grid
,”
J. Fluid Mech.
741
,
567
584
(
2014
).
23.
Hunt
,
J. C. R.
, “
Atmospheric jets and plumes
,” in
Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes
, NATO ASI Series (Series E: Applied Sciences), edited by
Davies
,
P. A.
and
Neves
,
M. J. V.
(
Springer
,
Dordrecht
,
1994
), Vol. 255.
24.
Hussein
,
H. J.
,
Capp
,
S. P.
, and
George
,
W. K.
, “
Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet
,”
J. Fluid Mech.
258
,
31
75
(
1994
).
25.
Iyogun
,
C. O.
and
Birouk
,
M.
, “
Effect of sudden expansion on entrainment and spreading rates of a jet issuing from asymmetric nozzles
,”
Flow, Turbul. Combust.
82
,
287
315
(
2009
).
26.
Kaminski
,
E.
,
Tait
,
S.
, and
Carazzo
,
G.
, “
Turbulent entrainment in jets with arbitrary buoyancy
,”
J. Fluid Mech.
526
,
361
376
(
2005
).
27.
Lindgren
,
B.
and
Johansson
,
A. V.
, “
Design and evaluation of a low-speed wind-tunnel with expanding corners
,” Technical Report,
Royal Institute of Technology
,
Stockholm, Sweden
,
2002
.
28.
Melina
,
G.
,
Bruce
,
P. J. K.
, and
Vassilicos
,
J. C.
, “
Vortex shedding effects in grid-generated turbulence
,”
Phys. Rev. Fluids
1
,
044402
(
2016
).
29.
Mi
,
J.
,
Kalt
,
P. A. M.
,
Nathan
,
G. J.
, and
Wong
,
C. Y.
, “
PIV measurements of a turbulent jet issuing from round sharp-edged plate
,”
Exp. Fluids
42
,
625
637
(
2007
).
30.
Mi
,
J.
and
Nathan
,
G. J.
, “
Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles
,”
Flow, Turbul. Combust.
84
,
583
606
(
2010
).
31.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
, “
Mixing characteristics of axisymmetric free jets from a contoured nozzle, an orifice plate and a pipe
,”
J. Fluids Eng.
123
,
878
883
(
2001
).
32.
Mi
,
J.
,
Xu
,
M.
, and
Zhou
,
T.
, “
Reynolds number influence on statistical behaviors of turbulence in a circular free jet
,”
Phys. Fluids
25
,
075101
(
2013
).
33.
Namer
,
I.
and
Ötügen
,
M. V.
, “
Velocity measurements in a plane turbulent air jet at moderate Reynolds numbers
,”
Exp. Fluids
6
,
387
399
(
1988
).
34.
Nedić
,
J.
,
Ganapathisubramani
,
B.
, and
Vassilicos
,
J. C.
, “
Drag and near wake characteristics of flat plates normal to the flow with fractal edge geometries
,”
Fluid Dyn. Res.
45
,
061406
(
2013a
).
35.
Nedić
,
J.
,
Supponen
,
O.
,
Ganapathisubramani
,
B.
, and
Vassilicos
,
J. C.
, “
Geometrical influence on vortex shedding in turbulent axisymmetric wakes
,”
Phys. Fluids
27
,
035103
(
2015
).
36.
Nedić
,
J.
,
Vassilicos
,
J. C.
, and
Ganapathisubramani
,
B.
, “
Axisymmetric turbulent wakes with new nonequilibrium similarity scalings
,”
Phys. Rev. Lett.
111
,
144503
(
2013b
).
37.
O’Neill
,
P. L.
,
Nicolaides
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
, “
Autocorrelation functions and the determination of integral length with reference to experimental and numerical data
,” in
Proceedings of the 15th Australasian Fluid Mechanics Conference, Sydney, Australia, 13-17 December 2004
, edited by M. Behnia, W. Lin, and G. D. McBain (
The University of Sydney
,
2004
).
38.
Obligado
,
M.
,
Dairay
,
T.
, and
Vassilicos
,
J. C.
, “
Nonequilibrium scalings of turbulent wakes
,”
Phys. Rev. Fluids
1
,
044409
(
2016
).
39.
Pope
,
S. B.
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
40.
Sadeghi
,
H.
,
Lavoie
,
P.
, and
Pollard
,
A.
, “
Equilibrium similarity solution of the turbulent transport equation along the centreline of a round jet
,”
J. Fluid Mech.
772
,
740
755
(
2015
).
41.
Shakouchi
,
T.
,
Iriyama
,
S.
,
Kawashima
,
Y.
,
Tsujimoto
,
K.
, and
Ando
,
T.
, “
Flow characteristics of submerged free jet flow from petal-shaped nozzle
,”
J. Fluid Sci. Technol.
9
(
3
),
1
7
(
2014
).
42.
Tanaka
,
T.
and
Eaton
,
J. K.
, “
A correction method for measuring turbulence kinetic energy dissipation rate by PIV
,”
Exp. Fluids
42
,
893
902
(
2007
).
43.
Tennekes
,
H.
and
Lumley
,
J. L.
,
A First Course in Turbulence
, 1st ed. (
MIT Press
,
Cambridge, Massachusetts; London
,
1972
).
44.
Thiesset
,
F.
,
Antonia
,
R. A.
, and
Djenidi
,
L.
, “
Consequences of self-preservation on the axis of a turbulent round jet
,”
J. Fluid Mech.
748
(
R2
),
1
11
(
2014
).
45.
Townsend
,
A. A.
, “
The mechanism of entrainment in free turbulent flows
,”
J. Fluid Mech.
26
,
689
715
(
1966
).
46.
Townsend
,
A. A.
,
The Structure of Turbulent Shear Flow
, 2nd ed.(
Cambridge University Press
,
New York
,
1976
).
47.
Valente
,
P. C.
and
Vassilicos
,
J. C.
, “
Universal dissipation scaling for nonequilibrium turbulence
,”
Phys. Rev. Lett.
108
,
214503
(
2012
).
48.
van Reeuwijk
,
M.
and
Craske
,
J.
, “
Energy-consistent entrainment relations for jets and plumes
,”
J. Fluid Mech.
782
,
333
355
(
2015
).
49.
Vassilicos
,
J. C.
, “
Dissipation in turbulent flows
,”
Annu. Rev. Fluid Mech.
47
,
95
114
(
2015
).
50.
Westerweel
,
J.
,
Fukushima
,
C.
,
Pedersen
,
J. M.
, and
Hunt
,
J. C. R.
, “
Mechanics of the turbulent-nonturbulent interface of a jet
,”
Phys. Rev. Lett.
95
,
174501
(
2005
).
51.
Westerweel
,
J.
and
Scarano
,
F.
, “
Universal outlier detection for PIV data
,”
Exp. Fluids
39
,
1096
1100
(
2005
).
52.
Worth
,
N. A.
,
Nickels
,
T. B.
, and
Swaminathan
,
N.
, “
A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data
,”
Exp. Fluids
49
,
637
656
(
2010
).
53.
Wygnanski
,
I.
,
Champagne
,
F. H.
, and
Marasli
,
B.
, “
On the large-scale structures in two-dimensional, small-deficit, turbulent wakes
,”
J. Fluid Mech.
168
,
31
71
(
1986
).
54.
Xu
,
M.
,
Pollard
,
A.
,
Mi
,
J.
,
Secretain
,
F.
, and
Sadeghi
,
H.
, “
Effects of Reynolds number on some properties of a turbulent jet from a long square pipe
,”
Phys. Fluids
25
,
035102
(
2013
).
55.
Xu
,
M. Y.
,
Tong
,
X. Q.
,
Yue
,
D. T.
,
Zhang
,
J. P.
,
Mi
,
J. C.
,
Nathan
,
G. J.
, and
Kalt
,
P. A.
, “
Effect of noncircular orifice plates on the near flow field of turbulent free jets
,”
Chin. Phys. B
23
,
124703
(
2014
).
56.
Yule
,
A. J.
, “
Large-scale structure in the mixing layer of a round jet
,”
J. Fluid Mech.
89
(
3
),
413
433
(
1978
).
You do not currently have access to this content.