In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.

1.
A.
Muggeridge
,
A.
Cockin
,
W.
Webb
,
H.
Frampton
,
I.
Collins
,
T.
Moulds
, and
P.
Salino
, “
Recovery rates, enhanced oil recovery and technological limits
,”
Philos. Trans. R. Soc., A
372
,
20120320
(
2006
).
2.
S.
Hill
, “
Channeling in packed columns
,”
Chem. Eng. Sci.
1
,
247
253
(
1952
).
3.
D. W.
Peaceman
and
J. R. H. H.
Rachford
, “
Numerical calculation of multidimensional miscible displacement
,”
Soc. Pet. Eng. J.
2
,
327
339
(
1962
).
4.
M. A.
Christie
and
D. J.
Bond
, “
Multidimensional flux corrected transport for reservoir simulation
,” in
SPE Reservoir Simulation Symposium
,
Dallas
,
1985
.
5.
R. J.
Blackwell
,
J. R.
Rayne
, and
W. M.
Terry
, “
Factors influencing the efficiency of miscible displacement
,”
Trans. AIME
217
,
1
8
(
1959
).
6.
D. E.
Moissis
,
C. A.
Miller
, and
M. F.
Wheeler
, “
A parametric study of viscous fingering in miscible displacement by numerical simulation
,”
Numer. Simul. Oil Recovery
11
,
227
247
(
1988
).
7.
T. F.
Russell
,
M. F.
Wheeler
, and
C.
Chiang
, “
Large-scale simulation of miscible displacement by mixes and characteristic finite element methods
,” in
Mathematical and Computational Methods in Seismic Exploration and Reservoir Modeling
(
SIAM
,
1985
), pp.
85
107
.
8.
C. T.
Tan
and
G. M.
Homsy
, “
Simulation of nonlinear viscous fingering in miscible displacement
,”
Phys. Fluids
31
,
1330
(
1988
).
9.
W. B.
Zimmermann
and
G. B.
Homsy
, “
Viscous fingering in miscible displacements: Unification of effects of viscosity contrast, anisotropic dispersion and velocity dependence of dispersion on non-linear finger propagation
,”
Phys. Fluids
4
,
2348
(
1992
).
10.
W. B.
Zimmermann
and
G. B.
Homsy
, “
Three-dimensional viscous fingering: A numerical study
,”
Phys. Fluids
4
,
1901
(
1992
).
11.
W. B.
Zimmerman
and
G. M.
Homsy
, “
Nonlinear viscous fingering in miscible displacements with anisotropic dispersion
,”
Phys. Fluids
3
,
1859
(
1991
).
12.
C. T.
Tan
and
G. M.
Homsy
, “
Viscous fingering with permeability heterogeneity
,”
Phys. Fluids
4
,
1099
(
1992
).
13.
A.
De Wit
and
G. M.
Homsy
, “
Viscous fingering in periodically heterogeneous porous media. I. Formulation and linear instability
,”
J. Chem. Phys.
107
,
9609
(
1997
).
14.
A.
De Wit
and
G. M.
Homsy
, “
Viscous fingering in periodically heterogeneous porous media. II. Numerical simulations
,”
J. Chem. Phys.
107
,
9619
(
1997
).
15.
B. K.
Singh
and
J.
Azaiez
, “
Numerical simulation of viscous fingering of shear-thinning fluids
,”
Can. J. Chem. Eng.
79
,
961
967
(
2001
).
16.
M. N.
Islam
and
J.
Azaiez
, “
Fully implicit finite difference pseudo-spectral method for simulating high mobility-ratio miscible displacements
,”
Int. J. Numer. Methods Fluids
47
,
161
183
(
2005
).
17.
M. N.
Islam
and
J.
Azaiez
, “
Miscible thermo-viscous fingering instability in porous media. Part 1: Linear stability analysis
,”
Transp. Porous Media
84
,
821
844
(
2010
).
18.
M. N.
Islam
and
J.
Azaiez
, “
Miscible thermo-viscous fingering instability in porous media. Part 2: Numerical simulations
,”
Transp. Porous Media
84
,
845
861
(
2010
).
19.
K.
Ghesmat
and
J.
Azaiez
, “
Viscous fingering instability in porous media: Effect of anisotropic velocity-dependent dispersion tensor
,”
Transp. Porous Media
73
,
297
318
(
2008
).
20.
I.
Maleka
,
A.
Saberi
, and
M. R.
Shahnazari
, “
Simulation and nonlinear instability investigation of two miscible fluid flow in homogeneous porous media
,”
J. Pet. Res.
27
(
96-4
),
147
162
(
2017
).
21.
M.
Norouzi
and
M.
Shoghi
, “
A numerical study on miscible viscous fingering instability in anisotropic porous media
,”
Phys. Fluids
26
,
084102
(
2014
).
22.
H.
Shokri
,
M. H.
Kayhani
, and
M.
Norouzi
, “
Nonlinear simulation and linear stability analysis of viscous fingering instability of viscoelastic liquids
,”
Phys. Fluids
29
,
033101
(
2017
).
23.
S. H.
Hejazi
and
J.
Azaiez
, “
Non-linear interactions of dynamic reactive interfaces in porous media
,”
Chem. Eng. Sci.
65
,
938
949
(
2010
).
24.
H.
Alhumade
and
J.
Azaiez
, “
Reversible reactive flow displacements in homogeneous porous media
,” in
Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering, WCE 2013
,
3–5 July 2013
, London, pp.
1681
1686
.
25.
S. H.
Hejazi
,
P. M. J.
Trevelyan
,
J.
Azaiez
, and
A.
De Wit
, “
Viscous fingering of a miscible reactive A + B interface: A linear stability analysis
,”
J. Fluid Mech.
652
,
501
528
(
2010
).
26.
M. R.
Shahnazari
and
M.
Zia Bashar Hagh
, “
Theoretical and experimental investigation of channeling effect in fluid flow through porous media
,”
J. Porous Media
8
,
115
124
(
2005
).
27.
Y. W.
Tsang
and
C. F.
Tsang
, “
Channel model of flow through fractured media
,”
Water Resour. Res.
23
(
3
),
467
479
, (
1987
).
28.
M.
Sahraoui
and
M.
Kaviany
, “
Slip and no-slip velocity boundary conditions at interface of porous, plain media
,”
Int. J. Heat Mass Transfer
35
,
927
943
(
1992
).
29.
K.
Vafai
, “
Convective flow and heat transfer in variable–porosity media
,”
J. Fluid Mech.
147
,
233
259
(
1984
).
30.
M. R.
Shahnazari
and
F.
Eslami
, “
Instability analysis of miscible displacements in homogeneous porous media
,”
IAChE
9
,
25
32
(
2012
).
31.
G.
Tryggvason
and
H.
Aref
, “
Finger-interaction mechanisms in stratified Hele-Shaw flow
,”
J. Fluid Mech.
154
,
278
301
(
1985
).
32.
O.
Manickam
and
G. M.
Homsy
, “
Fingering instabilities in vertical miscible displacement flows in porous media
,”
J. Fluid Mech.
288
,
75
102
(
1995
).
33.
C.-F.
Tsang
and
I.
Neretnieks
, “
Flow channeling in heterogeneous fractured rocks
,”
Rev. Geophys.
36
(
2
),
275
298
, (
1997
). Report Number: LBNL-39592.
34.
R. L.
Chuoke
,
P.
van Meurs
, and
C.
van der Poel
, “
The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media
,”
Soc. Pet. Eng., AIME
216
,
188
194
(
1959
).
35.
W. R.
Schowalter
, “
Stability criteria for miscible displacement of fluid from a porous media
,”
AIChE J.
11
(
1
),
99
105
(
1965
).
36.
R. L.
Perrine
, “
A unified theory for stable and unstable miscible displacement
,”
Soc. Pet. Eng. J.
3
(
3
),
205
(
1963
).
37.
E. J.
Peters
and
D. L.
Flock
, “
The onset of instability during two-phase immiscible displacement in porous media
,”
Soc. Pet. Eng. J.
21
(
2
),
249
(
1981
).
38.
C. T.
Tan
and
G. M.
Homsy
, “
Stability of miscible displacements in porous media: Rectilinear flow
,”
Phys. Fluids
29
,
3549
(
1986
).
39.
E.
Meiburg
and
G. M.
Homsy
Nonlinear unstable viscous fingers in Hele–Shaw flows. II. Numerical simulation
,”
Phys. Fluids
31
,
429
(
1988
).
40.
F. J.
Fayers
, “
Approximate model with physically interpretable parameters for representing miscible viscous fingering
,”
Soc. Pet. Eng. Reservoir Eng.
3
,
5515
5558
(
1988
).
41.
M. A.
Christie
and
D. J.
Bond
, “
Detailed simulation of unstable processes in miscible flooding
,”
Soc. Pet. Eng. Reservoir Eng.
2
,
512
522
(
1987
).
42.
R. N.
Bracewell
, “
The fast Hartley transform
,”
Proc. IEEE
72
,
1010
1018
(
1984
).
43.
M. R.
Shahnazari
and
A.
Vahabikashi
, “
Permeability prediction of porous media with variable porosity by investigation of Stokes flowover multi-particles
,”
J. Porous Media
14
,
243
(
2011
).
44.
A.
Rogerson
and
E.
Meiburg
, “
Numerical simulation of miscible displacement recesses in porous media flows under gravity
,”
Phys. Fluids
5
,
2644
(
1993
).
45.
E. J.
Koval
, “
A method for predicting the performance of unstable miscible displacements in heterogeneous medium
,”
Soc. Pet. Eng. J.
3
,
145
150
(
1963
).
46.
M. R.
Todd
and
W. J.
Longstaff
, “
The development, testing and application of a numerical simulator for predicting miscible flood performance
,”
J. Pet. Technol.
24
,
874
882
(
1972
).
You do not currently have access to this content.