In this study, two mode decomposition techniques were applied and compared to assess the flow dynamics in an orbital shaken bioreactor (OSB) of cylindrical geometry and flat bottom: proper orthogonal decomposition and dynamic mode decomposition. Particle Image Velocimetry (PIV) experiments were carried out for different operating conditions including fluid height, h, and shaker rotational speed, N. A detailed flow analysis is provided for conditions when the fluid and vessel motions are in-phase (Fr = 0.23) and out-of-phase (Fr = 0.47). PIV measurements in vertical and horizontal planes were combined to reconstruct low order models of the full 3D flow and to determine its Finite-Time Lyapunov Exponent (FTLE) within OSBs. The combined results from the mode decomposition and the FTLE fields provide a useful insight into the flow dynamics and Lagrangian coherent structures in OSBs and offer a valuable tool to optimise bioprocess design in terms of mixing and cell suspension.

1.
H.
Zhang
,
S.
Lamping
,
S.
Pickering
,
G.
Lye
, and
P.
Shamlou
, “
Engineering characterisation of a single well from 24-well and 96-well microtitre plates
,”
Biochem. Eng. J.
40
,
138
149
(
2008
).
2.
W.
Klöckner
and
J.
Büchs
, “
Advances in shaking technologies
,”
Trends Biotechnol.
30
,
307
314
(
2012
).
3.
N.
Raven
,
S.
Rasche
,
C.
Kuehn
,
T.
Anderlei
,
W.
Klöckner
,
F.
Schuster
,
M.
Henquet
,
D.
Bosch
,
J.
Büchs
,
R.
Fischer
, and
S.
Schillberg
, “
Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor
,”
Biotechnol. Bioeng.
112
,
308
321
(
2015
).
4.
X.
Zhang
,
M.
Stettler
,
D. D.
Sanctis
,
M.
Perrone
,
N.
Parolini
,
M.
Discacciati
,
M. D.
Jesus
,
D.
Hacker
,
A.
Quarteroni
, and
F.
Wurm
, “
Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1000-liter scale
,”
Adv. Biochem. Eng./Biotechnol.
115
,
33
53
(
2010
).
5.
C.
Pena
,
C.
Peter
,
J.
Büchs
, and
E.
Galindo
, “
Evolution of the specific power consumption and oxygen transfer rate in alginate-producing cultures of Azotobacter vinelandii conducted in shake flasks
,”
Biochem. Eng. J.
36
,
73
80
(
2007
).
6.
A.
Lara
,
E.
Galindo
,
O.
Ramirez
, and
L.
Palomares
, “
Living with heterogeneities in bioreactor
,”
Mol. Biotechnol.
34
,
355
381
(
2006
).
7.
J.
Gardner
and
G.
Tatterson
, “
Characterization of mixing in shaker table containers
,”
Biotechnol. Bioeng.
39
,
794
797
(
1992
).
8.
J.
Büchs
,
U.
Maier
,
C.
Milbradt
, and
B.
Zoels
, “
Power consumption in shaking flasks on rotatory shaking machines: I. Power consumption measurement in unbaffled flasks at low liquid viscosity
,”
Biotechnol. Bioeng.
68
,
589
593
(
2000
).
9.
J.
Büchs
,
S.
Lotter
, and
C.
Milbradt
, “
Out-of-phase operating conditions, a hitherto unknown phenomenon in shaking bioreactors
,”
Biochem. Eng. J.
7
,
135
141
(
2001
).
10.
H.
Zhang
,
W.
Dalson
,
E.
Moore
, and
P.
Shamlou
, “
Computational fluid dynamics (CFD) analysis of mixing and gas liquid mass transfer in shake flasks
,”
Biotechnol. Appl. Biochem.
41
,
1
8
(
2005
).
11.
H.
Kim
and
J. P.
Kizito
, “
Stirring free surface flows due to horizontal circulatory oscillation of partially filled container
,”
Chem. Eng. Commun.
196
(
11
),
1300
1321
(
2009
).
12.
W.
Weheliye
,
M.
Yianneskis
, and
A.
Ducci
, “
On the fluid dynamics of shaken bioreactors-flow characterization and transition
,”
AIChE J.
59
,
334
344
(
2013
).
13.
A.
Ducci
and
W.
Weheliye
, “
Orbitally shaken bioreactors viscosity effects on flow characteristics
,”
AIChE J.
60
,
3951
3968
(
2014
).
14.
G.
Rodriguez
,
I.
Pieralisi
,
T.
Anderlei
,
A.
Ducci
, and
M.
Micheletti
, “
Appraisal of fluid flow in a shaken bioreactor with conical bottom at different operating conditions
,”
Chem. Eng. Res. Des.
108
,
186
197
(
2016
).
15.
J. M. D.
Thomas
,
A.
Chakraborty
,
R. E.
Berson
,
M.
Shakeri
, and
M. K.
Sharp
, “
Validation of a CFD model of an orbiting culture dish with PIV and analytical solutions
,”
AIChE J.
63
,
4233
4242
(
2017
).
16.
M.
Reclari
,
M.
Dreyer
,
S.
Tissot
,
D.
Obreschkow
,
F. M.
Wurm
, and
M.
Farhat
, “
Surface wave dynamics in orbital shaken cylindrical containers
,”
Phys. Fluids
26
,
052104
(
2014
).
17.
J.
Bouvard
,
W.
Herreman
, and
F.
Moisy
, “
Mean mass transport in an orbitally shaken cylindrical container
,”
Phys. Rev. Fluids
2
,
084801
(
2017
).
18.
M.
Discacciati
,
D.
Hacker
,
A.
Quarteroni
,
S.
Quinodoz
,
S.
Tissot
, and
F.
Wurm
, “
Numerical simulation of orbitally shaken viscous fluids with free surface
,”
Int. J. Numer. Methods Fluids
71
,
294
315
(
2013
).
19.
G.
Rodriguez
,
W.
Weheliye
,
T.
Anderlei
,
M.
Micheletti
,
M.
Yianneskis
, and
A.
Ducci
, “
Mixing time and kinetic energy measurements in a shaken cylindrical bioreactor
,”
Chem. Eng. Res. Des.
91
,
2084
2097
(
2013
).
20.
G.
Rodriguez
,
T.
Anderlei
,
M.
Micheletti
,
M.
Yianneskis
, and
A.
Ducci
, “
On the measurement and scaling of mixing time in orbitally shaken bioreactors
,”
Biochem. Eng. J.
82
,
10
21
(
2014
).
21.
S.
Tissot
,
M.
Farhat
,
D.
Hacker
,
T.
Anderlei
, and
M.
Kühner
, “
Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors
,”
Biochem. Eng. J.
52
,
181
186
(
2010
).
22.
E.
Olmos
,
K.
Loubiere
,
C.
Martin
,
G.
Delaplace
, and
A.
Marc
, “
Critical agitation for microcarrier suspension in orbital shaken bioreactors: Experimental study and dimensional analysis
,”
Chem. Eng. Sci.
122
,
545
554
(
2015
).
23.
I.
Pieralisi
,
G.
Rodriguez
,
M.
Micheletti
,
A.
Paglianti
, and
A.
Ducci
, “
Microcarriers suspension and flow dynamics in orbitally shaken bioreactors
,”
Chem. Eng. Res. Des.
108
,
198
209
(
2016
).
24.
A.
Ducci
,
Z.
Doulgerakis
, and
M.
Yianneskis
, “
Decomposition of flow structures in stirred reactors and implication for mixing enhancement
,”
Ind. Eng. Chem. Res.
47
,
3664
3676
(
2008
).
25.
Z.
Doulgerakis
,
M.
Yianneskis
, and
A.
Ducci
, “
On the manifestation and nature of macro-instabilities in stirred vessels
,”
AIChE J.
57
,
2941
2954
(
2011
).
26.
A.
Line
, “
Eigenvalue spectrum versus energy density spectrum in a mixing tank
,”
Chem. Eng. Res. Des.
108
,
13
22
(
2016
).
27.
G.
Berkooz
,
P.
Holmes
, and
J.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
28.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
29.
S. L.
Brunton
,
J. L.
Proctor
,
J. H.
Tu
, and
J. N.
Kutz
, “
Compressed sensing and dynamic mode decomposition
,”
J. Comput. Dyn.
2
,
165
191
(
2015
).
30.
S. C.
Shadden
,
F.
Lekien
, and
J. E.
Marsden
, “
Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows
,”
Phys. D
212
,
271
304
(
2005
).
31.
N.
Cagney
and
S.
Balabani
, “
Lagrangian structures and mixing in the wake of a streamwise oscillating cylinder
,”
Phys. Fluids
28
,
045107
(
2016
).
32.
M.
Mathur
,
G.
Haller
,
T.
Peacock
,
J. E.
Ruppert-Felsot
, and
H. L.
Swinney
, “
Uncovering the Lagrangian skeleton of turbulence
,”
Phys. Rev. Lett.
98
,
144502
(
2007
).
33.
K. R.
Pratt
,
J. D.
Meiss
, and
J. P.
Crimaldi
, “
Reaction enhancement of initially distant scalars by Lagrangian coherent structures
,”
Phys. Fluids
27
,
035106
(
2015
).
34.
Y.
Wu
and
K. T.
Christensen
, “
Population trends of spanwise vortices in wall turbulence
,”
J. Fluid Mech.
568
,
55
76
(
2006
).
You do not currently have access to this content.