Orbital shakers are simple devices that provide mixing, aeration, and shear stress at multiple scales and high throughput. For this reason, they are extensively used in a wide range of applications from protein production to bacterial biofilms and endothelial cell experiments. This study focuses on the behaviour of orbitally shaken shallow fluid layers in cylindrical containers. In order to investigate the behaviour over a wide range of different conditions, a significant number of numerical simulations are carried out under different configuration parameters. We demonstrate that potential theory—despite the relatively low Reynolds number of the system—describes the free-surface amplitude well and the velocity field reasonably well, except when the forcing frequency is close to a natural frequency and resonance occurs. By classifying the simulations into non-breaking, breaking, and breaking with part of the bottom uncovered, it is shown that the onset of wave breaking is well described by Δh/(2R) = 0.7Γ, where Δh is the free-surface amplitude, R is the container radius, and Γ is the container aspect ratio; Δh can be well approximated using the potential theory. This result is in agreement with standard wave breaking theories although the significant inertial forcing causes wave breaking at lower amplitudes.

1.
S.
Tissot
,
M.
Farhat
,
D. L.
Hacker
,
T.
Anderlei
,
M.
Kühner
,
C.
Comninellis
, and
F.
Wurm
, “
Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors
,”
Biochem. Eng. J.
52
,
181
186
(
2010
).
2.
G.
Bai
,
J. S.
Bee
,
J. G.
Biddlecombe
,
Q.
Chen
, and
W. T.
Leach
, “
Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development
,”
Int. J. Pharm.
423
,
264
280
(
2012
).
3.
F. M.
Wurm
, “
Production of recombinant protein therapeutics in cultivated mammalian cells
,”
Nat. Biotechnol.
22
,
1393
1398
(
2004
).
4.
C. M.
Liu
and
L. N.
Hong
, “
Development of a shaking bioreactor system for animal cell cultures
,”
Biochem. Eng. J.
7
,
121
125
(
2001
).
5.
V.
Kostenko
,
M. M.
Salek
,
P.
Sattari
, and
R. J.
Martinuzzi
, “
Staphylococcus aureus biofilm formation and tolerance to antibiotics in response to oscillatory shear stresses of physiological levels
,”
FEMS Immunol. Med. Microbiol.
59
,
421
431
(
2010
).
6.
K. T.
Lim
,
J.
Hexiu
,
J.
Kim
,
H.
Seonwoo
,
P. H.
Choung
, and
J. H.
Chung
, “
Synergistic effects of orbital shear stress on in vitro growth and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells
,”
BioMed Res. Int.
2014
,
316803
.
7.
D. L.
Fry
, “
Certain chemorheologic considerations regarding the blood vascular interface with particular reference to coronary artery disease
,”
Circulation
40
,
IV-38
(
1969
).
8.
C. G.
Caro
,
J. M.
Fitz-Gerald
, and
R. C.
Schroter
, “
Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis
,”
Proc. R. Soc. B
177
,
109
133
(
1971
).
9.
D. N.
Ku
,
D. P.
Giddens
,
C. K.
Zarins
, and
S.
Glagov
, “
Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress
,”
Arterioscler., Thromb., Vasc. Biol.
5
,
293
302
(
1985
).
10.
M.
Lei
,
C.
Kleinstreuer
, and
G. A.
Truskey
, “
Numerical investigation and prediction of atherogenic sites in branching arteries
,”
J. Biomech. Eng.
117
,
350
357
(
1995
).
11.
V.
Peiffer
,
S. J.
Sherwin
, and
P. D.
Weinberg
, “
Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review
,”
Cardiovasc. Res.
99
,
242
250
(
2013
).
12.
M. M.
Salek
,
P.
Sattari
, and
R. J.
Martinuzzi
, “
Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates
,”
Ann. Biomed. Eng.
40
,
707
728
(
2012
).
13.
M.
Reclari
,
M.
Dreyer
,
S.
Tissot
,
D.
Obreschkow
,
F. M.
Wurm
, and
M.
Farhat
, “
Surface wave dynamics in orbital shaken cylindrical containers
,”
Phys. Fluids
26
,
052104
(
2014
).
14.
W.
Klöckner
,
S.
Tissot
,
F.
Wurm
, and
J.
Büchs
, “
Power input correlation to characterize the hydrodynamics of cylindrical orbitally shaken bioreactors
,”
Biochem. Eng. J.
65
,
63
69
(
2012
).
15.
T. A.
Barrett
,
A.
Wu
,
H.
Zhang
,
M. S.
Levy
, and
G. J.
Lye
, “
Microwell engineering characterization for mammalian cell culture process development
,”
Biotechnol. Bioeng.
105
,
260
275
(
2010
).
16.
H. M.
Kim
and
J. P.
Kizito
, “
Stirring free surface flows due to horizontal circulatory oscillation of a partially filled container
,”
Chem. Eng. Commun.
196
,
1300
1321
(
2009
).
17.
W.
Weheliye
,
M.
Yianneskis
, and
A.
Ducci
, “
On the fluid dynamics of shaken bioreactors- flow characterization and transition
,”
AIChE J.
59
,
334
344
(
2013
).
18.
J. M. D.
Thomas
,
A.
Chakraborty
,
R. E.
Berson
,
M.
Shakeri
, and
M. K.
Sharp
, “
Validation of a CFD model of an orbiting culture dish with PIV and analytical solutions
,”
AIChE J.
63
,
4233
(
2017
).
19.
K.
Ley
,
E.
Lundgren
,
E.
Berger
, and
K. E.
Arfors
, “
Shear-dependent inhibition of granulocyte adhesion to cultured endothelium by dextran sulfate
,”
Blood
73
,
1324
1330
(
1989
).
20.
L. W.
Kraiss
,
A. S.
Weyrich
,
N. M.
Alto
,
D. A.
Dixon
,
T. M.
Ennis
,
V.
Modur
,
T. M.
McIntyre
,
S. M.
Prescott
, and
G. A.
Zimmerman
, “
Fluid flow activates a regulator of translation, p70/p85 S6 kinase, in human endothelial cells
,”
Am. J. Physiol.: Heart Circ. Physiol.
278
,
H1537
H1544
(
2000
).
21.
L. W.
Kraiss
,
N. M.
Alto
,
D. A.
Dixon
,
T. M.
McIntyre
,
A. S.
Weyrich
, and
G. A.
Zimmerman
, “
Fluid flow regulates e-selectin protein levels in human endothelial cells by inhibiting translation
,”
J. Vasc. Surg.
37
,
161
168
(
2003
).
22.
S.
Yun
,
A.
Dardik
,
M.
Haga
,
A.
Yamashita
,
S.
Yamaguchi
,
Y.
Koh
,
J. A.
Madri
, and
B. E.
Sumpio
, “
Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium
,”
J. Biol. Chem.
277
,
34808
34814
(
2002
).
23.
M.
Haga
,
A.
Yamashita
,
J.
Paszkowiak
,
B. E.
Sumpio
, and
A.
Dardik
, “
Oscillatory shear stress increases smooth muscle cell proliferation and akt phosphorylation
,”
J. Vasc. Surg.
37
,
1277
1284
(
2003
).
24.
A.
Dardik
,
L.
Chen
,
J.
Frattini
,
H.
Asada
,
F.
Aziz
,
F. A.
Kudo
,
B. E.
Sumpio
,
N.
Haven
, and
W.
Haven
, “
Differential effects of orbital and laminar shear stress on endothelial cells
,”
J. Vasc. Surg.
41
,
869
880
(
2005
).
25.
H.
Asada
,
J.
Paszkowiak
,
D.
Teso
,
K.
Alvi
,
A.
Thorisson
,
J. C.
Frattini
,
F. A.
Kudo
,
B. E.
Sumpio
, and
A.
Dardik
, “
Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway
,”
J. Vasc. Surg.
42
,
772
780
(
2005
).
26.
H.
Kim
,
K. H.
Yang
,
H.
Cho
,
G.
Gwak
,
S. C.
Park
,
J. I.
Kim
,
S. S.
Yun
, and
I. S.
Moon
, “
Different effects of orbital shear stress on vascular endothelial cells: Comparison with the results of in vivo study with rats
,”
Vasc. Spec. Int.
31
,
33
40
(
2015
).
27.
C. M.
Warboys
,
R.
Eric Berson
,
G. E.
Mann
,
J. D.
Pearson
, and
P. D.
Weinberg
, “
Acute and chronic exposure to shear stress have opposite effects on endothelial permeability to macromolecules
,”
Am. J. Physiol.: Heart Circ. Physiol.
298
,
H1850
H1856
(
2010
).
28.
C. M. F.
Potter
,
M. H.
Lundberg
,
L. S.
Harrington
,
C. M.
Warboys
,
T. D.
Warner
,
R. E.
Berson
,
A. V.
Moshkov
,
J.
Gorelik
,
P. D.
Weinberg
, and
J. A.
Mitchell
, “
Role of shear stress in endothelial cell morphology and expression of cyclooxygenase isoforms
,”
Arterioscler., Thromb., Vasc. Biol.
31
,
384
391
(
2011
).
29.
J. M. D.
Thomas
,
A.
Chakraborty
,
M. K.
Sharp
, and
R. E.
Berson
, “
Spatial and temporal resolution of shear in an orbiting petri dish
,”
Biotechnol. Prog.
27
,
460
465
(
2011
).
30.
A.
Chakraborty
,
S.
Chakraborty
,
V. R.
Jala
,
B.
Haribabu
,
M. K.
Sharp
, and
R. E.
Berson
, “
Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology
,”
Biotechnol. Bioeng.
109
,
695
707
(
2012
).
31.
A.
Chakraborty
,
S.
Chakraborty
,
V. R.
Jala
,
J. M.
Thomas
,
M. K.
Sharp
,
R. E.
Berson
, and
B.
Haribabu
, “
Impact of bi-axial shear on atherogenic gene expression by endothelial cells
,”
Ann. Biomed. Eng.
44
,
3032
(
2016
).
32.
C. M.
Warboys
,
A.
De Luca
,
N.
Amini
,
L.
Luong
,
H.
Duckles
,
S.
Hsiao
,
A.
White
,
S.
Biswas
,
R.
Khamis
,
C. K.
Chong
,
W. M.
Cheung
,
S. J.
Sherwin
,
M. R.
Bennett
,
J.
Gil
,
J. C.
Mason
,
D. O.
Haskard
, and
P. C.
Evans
, “
Disturbed flow promotes endothelial senescence via a p53-dependent pathway
,”
Arterioscler., Thromb., Vasc. Biol.
34
,
985
995
(
2014
).
33.
N.
Filipovic
,
K.
Ghimire
,
I.
Saveljic
,
Z.
Milosevic
, and
C.
Ruegg
, “
Computational modeling of shear forces and experimental validation of endothelial cell responses in an orbital well shaker system
,”
Comput. Methods Biomech. Biomed. Eng.
19
,
581
(
2015
).
34.
V.
Velasco
,
M.
Gruenthal
,
E.
Zusstone
,
J. M.
Thomas
,
R. E.
Berson
,
R. S.
Keynton
, and
S. J.
Williams
, “
An orbital shear platform for real-time, in vitro endothelium characterization
,”
Biotechnol. Bioeng.
113
,
1336
1344
(
2015
).
35.
J.
Gardner
and
G.
Tatterson
, “
Characterization of mixing in shaker table containers
,”
Biotechnol. Bioeng.
39
,
794
797
(
1992
).
36.
X.
Zhang
,
C.-A.
Bürki
,
M.
Stettler
,
D.
De Sanctis
,
M.
Perrone
,
M.
Discacciati
,
N.
Parolini
,
M.
DeJesus
,
D. L.
Hacker
,
A.
Quarteroni
, and
F. M.
Wurm
, “
Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000L
,”
Biochem. Eng. J.
45
,
41
47
(
2009
).
37.
M.
Discacciati
,
D.
Hacker
,
A.
Quarteroni
,
S.
Quinodoz
,
S.
Tissot
, and
F. M.
Wurm
, “
Numerical simulation of orbitally shaken viscous fluids with free surface
,”
Int. J. Numer. Methods Fluids
71
,
294
315
(
2013
).
38.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
1967
).
39.
R. A.
Ibrahim
,
Liquid Sloshing Dynamics
(
Cambridge University Press
,
2005
).
40.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
1962
), p.
641
.
41.
M.
Reclari
, “
Hydrodynamics of orbital shaken bioreactors
,” Ph.D. thesis,
École Polytechnique Fédérale de Lausanne
,
2013
.
42.
R. E.
Berson
,
M. R.
Purcell
, and
M. K.
Sharp
, “
Computationally determined shear on cells grown in orbiting culture dishes
,”
Adv. Exp. Med. Biol.
614
,
189
198
(
2008
).
43.
O.
Mahrenholtz
and
M.
Markiewicz
, in
Nonlinear Water Wave Interaction
(
WIT Press
,
1999
), Chap. 2, p.
272
.
44.
M.
Ghim
,
P.
Alpresa
,
S.
Yang
,
S. T.
Braakman
,
S. G.
Gray
,
S. J.
Sherwin
,
M.
van Reeuwijk
, and
P. D.
Weinberg
, “
Visualisation of three pathways for macromolecule transport across cultured endothelium and their modification by flow
,”
Am. J. Physiol.: Heart Circ. Physiol.
313
,
H959
(
2017
).
45.
P.
Alpresa
, “
Fluid dynamics of orbitally shaken shallow fluid layers
,” Ph.D. thesis,
Imperial College London
,
2017
.
46.
J. F.
Filipot
,
F.
Ardhuin
, and
A. V.
Babanin
, “
A unified deep-to-shallow water wave-breaking probability parameterization
,”
J. Geophys. Res.: Oceans
115
,
1
15
, (
2010
).
47.
A.
Miche
, “
Mouvements ondulatoires de la mer en profondeur croissante ou décroissante. Première partie. Mouvements ondulatoires périodiques et cylindriques en profondeur constante
,”
Ann. Ponts Chaussées
114
,
42
78
(
1944
).
48.
P.
Alpresa
,
S.
Sherwin
,
P. D.
Weinberg
, and
M.
van Reeuwijk
, “
Orbitally shaken shallow fluid layers. II. An improved wall shear stress model
,”
Phys. Fluids
30
,
032108
(
2018
).
You do not currently have access to this content.