Red blood cells tend to aggregate in the presence of plasma proteins, forming structures known as rouleaux. Here, we derive a constitutive rheological model for human blood which accounts for the formation and dissociation of rouleaux using the generalized bracket formulation of nonequilibrium thermodynamics. Similar to the model derived by Owens and co-workers [“A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow,” J. Fluid Mech. 617, 327–354 (2008)] through polymer network theory, each rouleau in our model is represented as a dumbbell; the corresponding structural variable is the conformation tensor of the dumbbell. The kinetics of rouleau formation and dissociation is treated as in the work of Germann et al. [“Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions,” J. Non-Newton. Fluid Mech. 196, 51–57 (2013)] by assuming a set of reversible reactions, each characterized by a forward and a reverse rate constant. The final set of evolution equations for the microstructure of each rouleau and the expression for the stress tensor turn out to be very similar to those of Owens and co-workers. However, by explicitly considering a mechanism for the formation and breakage of rouleaux, our model further provides expressions for the aggregation and disaggregation rates appearing in the final transport equations, which in the kinetic theory-based network model of Owens were absent and had to be specified separately. Despite this, the two models are found to provide similar descriptions of experimental data on the size distribution of rouleaux.

1.
Anand
,
M.
and
Rajagopal
,
K. R.
, “
A shear-thinning viscoelastic fluid model for describing the flow of blood
,”
Int. J. Cardiovasc. Med. Sci.
4
,
59
68
(
2004
).
2.
Apostolakis
,
M. V.
,
Mavrantzas
,
V. G.
, and
Beris
,
A. N.
, “
Stress gradient-induced migration effects in the Taylor-Couette flow of a dilute polymer solution
,”
J. Non-Newton. Fluid Mech.
102
,
409
445
(
2002
).
3.
Apostolidis
,
A. J.
and
Beris
,
A. N.
, “
Modeling of the blood rheology in steady-state shear flows
,”
J. Rheol.
58
,
607
633
(
2014
).
4.
Barabino
,
G. A.
,
Platt
,
M. O.
, and
Kaul
,
D. K.
, “
Sickle cell biomechanics
,”
Annu. Rev. Biomed. Eng.
12
,
345
367
(
2010
).
5.
Barshtein
,
G.
,
Wajnblum
,
D.
, and
Yedgar
,
S.
, “
Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization
,”
Biophys. J.
78
,
2470
2474
(
2000
).
6.
Baskurt
,
O. K.
and
Meiselman
,
H. J.
, “
Blood rheology and hemodynamics
,”
Semin. Thromb. Hemostasis
29
,
435
450
(
2003
).
7.
Beris
,
A. N.
, “
Simple non-equilibrium thermodynamics applications to polymer rheology
,”
Rheol. Rev.
2003
,
37
75
.
8.
Beris
,
A. N.
and
Edwards
,
B. J.
,
Thermodynamics of Flowing Systems With Internal Microstructure
(
Oxford University Press
,
New York
,
1994
).
9.
Beris
,
A. N.
and
Mavrantzas
,
V. G.
, “
On the compatibility between various macroscopic formalisms for the concentration and flow of dilute polymer solutions
,”
J. Rheol.
38
,
1235
(
1994
).
10.
Bureau
,
M.
,
Healy
,
J. C.
,
Bourgoin
,
D.
, and
Joly
,
M.
, “
Rheological hysteresis of blood at low shear rate
,”
Biorheology
17
,
191
203
(
1980
).
11.
Chen
,
S.
,
Gavish
,
B.
,
Mahler
,
Y.
, and
Yedgar
,
S.
, “
Monitoring of erythrocyte aggregate morphology under flow by computerized image analysis
,”
Biorheology
32
,
487
496
(
1995
).
12.
Chien
,
S.
, “
Shear dependence of effective cell volume as a determinant of blood viscosity
,”
Science
168
,
977
979
(
1970
).
13.
Chien
,
S.
,
Usami
,
S.
,
Taylor
,
H. M.
,
Lundberg
,
J. L.
, and
Gregersen
,
M. I.
, “
Effects of hematocrit and plasma proteins on human blood rheology at low shear rates
,”
J. Appl. Physiol.
21
,
81
87
(
1966
).
14.
Cho
,
Y. I.
,
Mooney
,
M. P.
, and
Cho
,
D. J.
, “
Hemorheological disorders in diabetes mellitus
,”
J. Diabetes Sci. Technol.
2
,
1130
1138
(
2008
).
15.
Doi
,
M.
and
Edwards
,
S. F.
,
The Theory of Polymer Dynamics
(
Oxford
,
Clarendon, United Kingdom
,
1986
).
16.
Eckmann
,
D. M.
,
Bowers
,
S.
,
Stecker
,
M.
, and
Cheung
,
A. T.
, “
Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity
,”
Anesth. Analg.
91
,
539
545
(
2000
).
17.
Fang
,
J.
and
Owens
,
R. G.
, “
Numerical simulations of pulsatile blood flow using a new constitutive model
,”
Biorheology
43
,
637
660
(
2006
).
18.
Fedosov
,
D. A.
,
Pan
,
W.
,
Caswell
,
B.
,
Gompper
,
G.
, and
Karniadakis
,
G. E.
, “
Predicting human blood viscosity in silico
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
11772
11777
(
2011
).
19.
Germann
,
N.
,
Cook
,
L. P.
, and
Beris
,
A. N.
, “
Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions
,”
J. Non-Newton. Fluid Mech.
196
,
51
57
(
2013
).
20.
Grmela
,
M.
and
Öttinger
,
H. C.
, “
Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
,”
Phys. Rev. E
56
(
6
),
6620
(
1997
).
21.
Herschel
,
W. H.
and
Bulkley
,
R.
, “
Konsistenzmessungen von gummi benzollösungen
,”
Kolloid-Z.
39
,
291
300
(
1926
).
22.
Ju
,
M.
,
Ye
,
S. S.
,
Namgung
,
B.
,
Cho
,
S.
,
Low
,
H. T.
,
Leo
,
H. L.
, and
Kim
,
S.
, “
A review of numerical methods for red blood cell flow simulation
,”
Comput. Methods Biomech. Biomed. Eng.
18
,
130
(
2013
).
23.
Kaestner
,
L.
,
Steffen
,
P.
,
Nguyen
,
D.
,
Wang
,
J.
,
Wagner-Britz
,
L.
,
Jung
,
A.
,
Wagner
,
C.
, and
Bernhardt
,
I.
, “
Lysophosphatidic acid induced red blood cell aggregation in vitro
,”
Bioelectrochemistry
87
,
89
95
(
2012
).
24.
Kaliviotis
,
E.
, “
Mechanics of the red blood cell network
,”
J. Cell. Biotechnol.
1
,
37
43
(
2015
).
25.
Kaliviotis
,
E.
and
Yianneskis
,
M.
, “
Fast response characteristics of red blood cell aggregation
,”
Biorheology
45
,
639
649
(
2008
).
26.
Kaliviotis
,
E.
and
Yianneskis
,
M.
, “
Blood viscosity modelling: Influence of aggregate network dynamics under transient conditions
,”
Biorheology
48
,
127
147
(
2011
).
27.
Kaliviotis
,
E.
,
Dusting
,
J.
, and
Balabani
,
S.
, “
Spatial variation of blood viscosity: Modelling using shear fields measured by a μPIV based technique
,”
Med. Eng. Phys.
33
,
824
831
(
2011
).
28.
Kaliviotis
,
E.
,
Sherwood
,
J. M.
, and
Balabani
,
S.
, “
Partitioning of red blood cell aggregates in bifurcating microscale flows
,”
Sci. Rep.
7
,
44563
(
2017
).
29.
Mavrantzas
,
V. G.
and
Beris
,
A. N.
, “
A hierarchical model for surface effects on chain conformation and rheology of polymer solutions. I. General formulation
,”
J. Chem. Phys.
110
,
616
627
(
1999a
).
30.
Mavrantzas
,
V. G.
and
Beris
,
A. N.
, “
A hierarchical model for surface effects on chain conformation and rheology of polymer solutions. II. Application to a neutral surface
,”
J. Chem. Phys.
110
,
628
638
(
1999b
).
31.
Mehri
,
R.
,
Laplante
,
J.
,
Mavriplis
,
C.
, and
Fenech
,
M.
, “
Investigation of blood flow analysis and red blood cell aggregation
,”
J. Med. Biol. Eng.
34
,
469
474
(
2013
).
32.
Merrill
,
E. W.
and
Pelletier
,
G. A.
, “
Viscosity of human blood: Transition from Newtonian to non-Newtonian
,”
J. Appl. Physiol.
23
,
178
182
(
1967
).
33.
Merrill
,
E. W.
,
Gilliland
,
E. R.
,
Cokelet
,
G.
,
Shin
,
H.
,
Britten
,
A.
, and
Wells
,
R. E.
, Jr.
, “
Rheology of human blood, near and at zero flow: Effects of temperature and hematocrit level
,”
Biophys. J.
3
,
199
213
(
1963a
).
34.
Merrill
,
E. W.
,
Cokelet
,
G. C.
,
Britten
,
A.
, and
Wells
,
R. E.
, Jr.
, “
Non-Newtonian rheology of human-blood-effect of fibrinogen deduced by ‘subtraction’
,”
Circ. Res.
13
,
48
55
(
1963b
).
35.
Merrill
,
E. W.
,
Benis
,
A. M.
,
Gilliland
,
E. R.
,
Sherwood
,
T. K.
, and
Salzman
,
E. W.
, “
Pressure-flow relations of human blood in hollow fibers at low flow rates
,”
J. Appl. Physiol.
20
,
954
967
(
1965
).
36.
Moyers-Gonzalez
,
M.
,
Owens
,
R. G.
, and
Fang
,
J.
, “
A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow
,”
J. Fluid Mech.
617
,
327
354
(
2008
).
37.
Murata
,
T.
and
Secomb
,
T. W.
, “
Effects of shear rate on rouleau formation in simple shear flow
,”
Biorheology
25
,
113
122
(
1988
).
38.
Oldroyd
,
J. G.
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. A
200
,
523
541
(
1950
).
39.
Öttinger
,
H. C.
,
Beyond Equilibrium Thermodynamics
(
Wiley-Interscience
,
New York
,
2004
).
40.
Öttinger
,
H. C.
, “
Thermodynamic formulation of wall slip
,”
J. Non-Newtonian Fluid Mech.
152
,
66
75
(
2008
).
41.
Öttinger
,
H. C.
and
Grmela
,
M.
, “
Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
,”
Phys. Rev. E
56
(
6
),
6633
(
1997
).
42.
Owens
,
R. G.
, “
A new microstructure-based constitutive model for human blood
,”
J. Non-Newtonian Fluid Mech.
140
,
57
70
(
2006
).
43.
Pan
,
W.
,
Caswell
,
B.
, and
Karniadakis
,
G. E.
, “
A low-dimensional model for the red blood cell
,”
Soft Matter
6
,
4366
4376
(
2010
).
44.
Perkkiö
,
J.
and
Keskinen
,
R.
, “
Hematocrit reduction in bifurcations due to plasma skimming
,”
Bull. Math. Biol.
45
(
1
),
41
50
(
1983
).
45.
Rajagopal
,
K. R.
and
Srinivasa
,
A. R.
, “
A thermodynamic frame work for rate type fluid models
,”
J. Non-Newtonian Fluid Mech.
88
,
207
227
(
2000
).
46.
Samsel
,
R. W.
and
Perelson
,
A. S.
, “
Kinetics of rouleau formation. I. A mass action approach with geometric features
,”
Biophys. J.
37
,
493
514
(
1982
).
47.
Samsel
,
R. W.
and
Perelson
,
A. S.
, “
Kinetics of rouleau formation. II. Reversible reactions
,”
Biophys. J.
45
,
805
824
(
1984
).
48.
Schmid Schönbein
,
H.
,
Gaehtgens
,
P.
, and
Hirsch
,
H.
, “
On the shear rate dependence of red cell aggregation in vitro
,”
J. Clin. Invest.
47
,
1447
1454
(
1968
).
49.
Shalak
,
R.
,
Keller
,
S. R.
, and
Secomb
,
T. W.
, “
Mechanics of blood flow
,”
J. Biomech. Eng.
103
,
102
115
(
1981
).
50.
Shelby
,
J. P.
,
White
,
J.
,
Ganesan
,
K.
,
Rathod
,
P. K.
, and
Chiu
,
D. T.
, “
A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
14618
14622
(
2003
).
51.
Shiga
,
T.
,
Imaizumi
,
K.
,
Harada
,
N.
, and
Sekiya
,
M.
, “
Kinetics of rouleaux formation using TV image analyzer. I. Human erythrocytes
,”
Am. J. Physiol.
245
,
H252
H258
(
1983a
).
52.
Shiga
,
T.
,
Imaizumi
,
K.
,
Maeda
,
N.
, and
Kon
,
K.
, “
Kinetics of rouleaux formation using TV image analyzer. II. Rat erythrocytes
,”
Am. J. Physiol.
245
,
H259
H264
(
1983b
).
53.
Steffen
,
P.
,
Verdier
,
C.
, and
Wagner
,
C.
, “
Quantification of depletion-induced adhesion of red blood cells
,”
Phys. Rev. Lett.
110
,
018102
(
2013
).
54.
Stephanou
,
P. S.
, “
How the flow affects the phase behaviour and microstructure of polymer nanocomposites
,”
J. Chem. Phys.
142
,
064901
(
2015
).
55.
Stephanou
,
P. S.
, “
The rheology of drilling fluids from a non-equilibrium thermodynamics perspective
,”
J. Pet. Sci. Eng.
(published online
2017
).
56.
Stephanou
,
P. S.
,
Baig
,
C.
, and
Mavrantzas
,
V. G.
, “
A generalized differential constitutive equation for polymer melts based on principles of nonequilibrium thermodynamics
,”
J. Rheol.
53
,
309
337
(
2009
).
57.
Stephanou
,
P. S.
,
Mavrantzas
,
V. G.
, and
Georgiou
,
G. C.
, “
Continuum model for the phase behavior, microstructure, and rheology of unentangled polymer nanocomposite melts
,”
Macromolecules
47
,
4493
4513
(
2014
).
58.
Stephanou
,
P. S.
,
Tsimouri
,
I. Ch.
, and
Mavrantzas
,
V. G.
, “
Flow-induced orientation and stretching of entangled polymers in the framework of nonequilibrium thermodynamics
,”
Macromolecules
49
,
3161
3173
(
2016
).
59.
Szołna-Chodór
,
A.
,
Bosek
,
M.
, and
Grzegorzewski
,
B.
, “
Kinetics of red blood cell rouleaux formation studied by light scattering
,”
J. Biomed. Opt.
20
(
2
),
025001
(
2015
).
60.
Usmani
,
R.
, “
Inversion of a tridiagonal jacobi matrix
,”
Linear Algebra Appl.
212-213
,
413
414
(
1994
).
61.
Usami
,
S.
,
Chien
,
S.
, and
Bertles
,
J. F.
, “
Deformabolity of sickle cells as studied by micro-sieving
,”
J. Lab. Clin. Med.
86
,
274
279
(
1975
).
62.
Yilmaz
,
F.
and
Gundogdu
,
M. Y.
, “
A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions
,”
Korea-Australia Rheol. J.
20
,
197
211
(
2008
).

Supplementary Material

You do not currently have access to this content.