We solve numerically the axisymmetric squeeze flow of a viscoplastic Bingham medium with slip yield boundary condition at the wall. Using the original Bingham model we compute the shape of the yield surface, the velocity, and stress fields employing the augmented Lagrangian methods. We confirm numerically the recently obtained asymptotic solution.
REFERENCES
1.
J.
Engmann
, C.
Servais
, and A. S.
Burbidge
, “Squeeze flow theory and applications to rheometry: A review
,” J. Non-Newtonian Fluid Mech.
132
, 1
–27
(2005
).2.
G. H.
Meeten
, “Effect of plate roughness in squeeze flow rheometry
,” J. Non-Newtonian Fluid Mech.
124
, 51
–60
(2004
).3.
P.
Coussot
, “Yield stress fluid flows: A review of experimental data
,” J. Non-Newtonian Fluid Mech.
211
, 31
–49
(2014
).4.
N. J.
Balmforth
, I. A.
Frigaard
, and G.
Ovarlez
, “Yielding to stress: Recent developments in viscoplastic fluid mechanics
,” Annu. Rev. Fluid Mech.
46
, 121
–146
(2014
).5.
E.
Mitsoulis
and J.
Tsamopoulos
, “Numerical simulations of complex yield-stress fluid flows
,” Rheol. Acta
56
, 231
–258
(2017
).6.
A. N.
Alexandrou
, G. C.
Florides
, and G. C.
Georgiou
, “Squeeze flow of semi-solid slurries
,” J. Non-Newtonian Fluid Mech.
193
, 103
–115
(2013
).7.
A.
Krassnokutski
, E. A.
Moss
, and B. W.
Skews
, “An experimental study of highly transient squeeze-film flows
,” Phys. Fluids
25
, 063102
(2013
).8.
L.
Muravleva
, “Squeeze plane flow of viscoplastic Bingham material
,” J. Non-Newtonian Fluid Mech.
220
, 148
–161
(2015
).9.
L.
Fusi
, A.
Farina
, and F.
Rosso
, “Planar squeeze flow of a Bingham fluid
,” J. Non-Newtonian Fluid Mech.
225
, 1
–9
(2015
).10.
L.
Muravleva
, “Axisymmetric squeeze flow of a viscoplastic Bingham medium
,” J. Non-Newtonian Fluid Mech.
249
, 97
–120
(2017
).11.
E. J.
O’Donovan
and R. I.
Tanner
, “Numerical study of the Bingham squeeze film problem
,” J. Non-Newtonian Fluid Mech.
15
, 75
–83
(1984
).12.
D. N.
Smyrnaios
and J. A.
Tsamopoulos
, “Squeeze flow of Bingham plastics
,” J. Non-Newtonian Fluid Mech.
100
, 165
–190
(2001
).13.
A.
Matsoukas
and E.
Mitsoulis
, “Geometry effects in squeeze flow of Bingham plastics
,” J. Non-Newtonian Fluid Mech.
109
, 231
–240
(2003
).14.
E.
Mitsoulis
and A.
Matsoukas
, “Free surface effects in squeeze flow of Bingham plastics
,” J. Non-Newtonian Fluid Mech.
129
, 182
–187
(2005
).15.
J. R. A.
Pearson
and C. J. S.
Petrie
, in Proceedings of the Fourth International Congress on Rheology
(Wiley
, New-York
, 1965
), Vol. 3, pp. 265
–282
.16.
U.
Yilmazer
and D. M.
Kalyon
, “Slip effects in capillary and parallel disk torsional flows of highly filled suspensions
,” J. Rheol.
33
, 1197
–1212
(1989
).17.
H. A.
Barnes
, “A review of the slip (wall depletion) of polymer solutions, emulsions and particle slip in viscometers–its cause, character, and cure
,” J. Non-Newtonian Fluid Mech.
56
, 221
–251
(1995
).18.
M. M.
Denn
, “Extrusion instabilities and wall slip
,” Annu. Rev. Fluid Mech.
33
, 265
–287
(2001
).19.
D. M.
Kalyon
, “Apparent slip and viscoplasticity of concentrated suspensions
,” J. Rheol.
49
, 621
–640
(2005
).20.
D.
Ballesta
, G.
Petekidis
, L.
Isa
, W. C. K.
Poon
, and R.
Besseling
, “Wall slip and flow of concentrated hard-sphere colloidal suspensions
,” J. Rheol.
56
, 1005
(2012
).21.
S. G.
Hatzikiriakos
, “Slip mechanisms in complex fluid flows
,” Soft Matter
11
, 7851
(2015
).22.
M.
Cloitre
and R. T.
Bonnecaze
, “A review on wall slip in high solid dispersions
,” Rheol. Acta
56
, 283
–305
(2017
).23.
G.
Karapetsas
and J.
Tsamopoulos
, “Transient squeeze flow of viscoplastic materials
,” J. Non-Newtonian Fluid Mech.
133
, 35
–56
(2006
).24.
R. R.
Huilgol
, “Variational principle and variational inequality for a yield stress fluid in the presence of slip
,” J. Non-Newtonian Fluid Mech.
75
(2-3
), 231
–251
(1998
).25.
A.
Fortin
, D.
Cote
, and P. A.
Tanguy
, “On the imposition of friction boundary conditions for the numerical simulation of Bingham fluid flows
,” Comput. Methods Appl. Mech. Eng.
88
, 97
–109
(1991
).26.
M.
Fortin
and R.
Glowinski
, Augmented Lagrangian Methods
(Elsevier
, North-Holland
, 1983
).27.
N.
Roquet
and P.
Saramito
, “An adaptive finite element method for viscoplastic flows in a square pipe with stick-slip at the wall
,” J. Non-Newtonian Fluid Mech.
155
, 101
–115
(2008
).28.
Y.
Damianou
and G. C.
Georgiou
, “Viscoplastic Poiseuille flow in a rectangular duct with wall slip
,” J. Non-Newtonian Fluid Mech.
214
, 88
–105
(2014
).29.
Y.
Damianou
, G.
Kaoullas
, and C.
Georgiou
, “Cessation of viscoplastic Poiseuille flow in a square duct with wall slip
,” J. Non-Newtonian Fluid Mech.
233
, 13
–26
(2016
).30.
P.
Saramito
and A.
Wachs
, “Progress in numerical simulation of yield stress fluid flows
,” Rheol. Acta
56
, 211
–230
(2017
).31.
Y.
Dimakopoulos
, M.
Pavlidis
, and J.
Tsamopoulos
, “Steady bubble rise in Herschel-Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model
,” J. Non-Newtonian Fluid Mech.
200
, 34
–51
(2013
).32.
T.
Treskatis
, M.
Moyers-Gonzalez
, and C. J.
Price
, “An accelerated dual proximal gradient method for applications in viscoplasticity
,” J. Non-Newtonian Fluid Mech.
238
, 115
–130
(2016
).33.
P.
Saramito
, “A damped Newton algorithm for computing viscoplastic fluid flows
,” J. Non-Newtonian Fluid Mech.
238
, 6
–15
(2016
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.