We consider a two-fluid shear flow where the interface between the two fluids is coated with an insoluble surfactant. An asymptotic model is derived in the thin-layer approximation, consisting of a set of nonlinear partial differential equations describing the evolution of the film and surfactant disturbances at the interface. The model includes important physical effects such as Marangoni forces (caused by the presence of surfactant), inertial forces arising in the thick fluid layer, as well as gravitational forces. The aim of this study is to investigate the effect of density stratification or gravity—represented through the Bond number Bo—on the flow stability and the interplay between the different (de)stabilisation mechanisms. It is found that gravity can either stabilise or destabilise the interface (depending on fluid properties) but not always as intuitively anticipated. Different traveling-wave branches are presented for varying Bo, and the destabilising mechanism associated with the Marangoni forces is discussed.

1.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
2.
D.
Halpern
and
A. L.
Frenkel
, “
Nonlinear evolution, travelling waves, and secondary instability of sheared-film flows with insoluble surfactants
,”
J. Fluid Mech.
594
,
125
156
(
2008
).
3.
M. G.
Blyth
and
C.
Pozrikidis
, “
Effect of surfactants on the stability of two-layer channel flow
,”
J. Fluid Mech.
505
,
59
86
(
2004
).
4.
A. P.
Bassom
,
M. G.
Blyth
, and
D. T.
Papageorgiou
, “
Nonlinear development of two-layer Couette–Poiseuille flow in the presence of surfactant
,”
Phys. Fluids
22
,
102102
(
2010
).
5.
A.
Kalogirou
and
D. T.
Papageorgiou
, “
Nonlinear dynamics of surfactant-laden two-fluid Couette flows in the presence of inertia
,”
J. Fluid Mech.
802
,
5
36
(
2016
).
6.
S. A.
Kas-Danouche
,
D. T.
Papageorgiou
, and
M.
Siegel
, “
Nonlinear dynamics of core-annular film flows in the presence of surfactant
,”
J. Fluid Mech.
626
,
415
448
(
2009
).
7.
A. P.
Bassom
,
M. G.
Blyth
, and
D. T.
Papageorgiou
, “
Using surfactants to stabilize two-phase pipe flows of core–annular type
,”
J. Fluid Mech.
704
,
333
359
(
2012
).
8.
J.
Thompson
and
M. G.
Blyth
, “
Inertialess multilayer film flow with surfactant: Stability and traveling waves
,”
Phys. Rev. Fluids
1
,
063904
(
2016
).
9.
C.-S.
Yih
, “
Instability due to viscosity stratification
,”
J. Fluid Mech.
27
,
337
352
(
1967
).
10.
A. P.
Hooper
, “
Long-wave instability at the interface between two viscous fluids: Thin layer effects
,”
Phys. Fluids
28
,
1613
1618
(
1985
).
11.
A. L.
Frenkel
and
D.
Halpern
, “
Stokes-flow instability due to interfacial surfactant
,”
Phys. Fluids
14
,
L45
(
2002
).
12.
D.
Halpern
and
A. L.
Frenkel
, “
Destabilization of a creeping flow by interfacial surfactant: Linear theory extended to all wavenumbers
,”
J. Fluid Mech.
485
,
191
220
(
2003
).
13.
M. G.
Blyth
and
C.
Pozrikidis
, “
Effect of inertia on the Marangoni instability of two-layer channel flow, part II: Normal-mode analysis
,”
J. Eng. Math.
50
,
329
341
(
2004
).
14.
A. L.
Frenkel
and
D.
Halpern
, “
Strongly nonlinear nature of interfacial-surfactant instability of Couette flow
,”
Int. J. Pure Appl. Math.
29
,
205
223
(
2006
).
15.
A.
Kalogirou
,
D. T.
Papageorgiou
, and
Y.-S.
Smyrlis
, “
Surfactant destabilization and non-linear phenomena in two-fluid shear flows at small Reynolds numbers
,”
IMA J. Appl. Math.
77
,
351
360
(
2012
).
16.
A. L.
Frenkel
and
D.
Halpern
, “
Surfactant and gravity dependent instability of two-layer Couette flows and its nonlinear saturation
,”
J. Fluid Mech.
826
,
158
204
(
2017
).
17.
F.
Charru
and
E. J.
Hinch
, “
‘Phase diagram’ of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability
,”
J. Fluid Mech.
414
,
195
223
(
2000
).
18.
F.
Albert
and
F.
Charru
, “
Small Reynolds number instabilities in two-layer Couette flow
,”
Eur. J. Mech. B–Fluids
19
,
229
252
(
2000
).
19.
H.-H.
Wei
, “
Marangoni destabilization on a core-annular film flow due to the presence of surfactant
,”
Phys. Fluids
17
,
027101
(
2005
).
20.
Lord
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-14
,
170
177
(
1883
).
21.
A. P.
Hooper
and
W. G. C.
Boyd
, “
Shear-flow instability due to a wall and a viscosity discontinuity at the interface
,”
J. Fluid Mech.
179
,
201
225
(
1987
).
22.
F.
Charru
and
J.
Fabre
, “
Long waves at the interface between two viscous fluids
,”
Phys. Fluids
6
,
1223
1235
(
1994
).
23.
G.
Akrivis
and
M.
Crouzeix
, “
Linearly implicit methods for nonlinear parabolic equations
,”
Math. Comput.
73
,
613
635
(
2004
).
24.
G.
Akrivis
,
D. T.
Papageorgiou
, and
Y.-S.
Smyrlis
, “
Linearly implicit methods for a semilinear parabolic system arising in two-phase flows
,”
IMA J. Numer. Anal.
31
,
299
321
(
2011
).
25.
G.
Akrivis
and
Y.-S.
Smyrlis
, “
Implicit–explicit BDF methods for the Kuramoto–Sivashinsky equation
,”
Appl. Numer. Math.
51
,
151
169
(
2004
).
26.
E. J.
Doedel
and
B. E.
Oldman
, AUTO-07P: Continuation and bifurcation software for ordinary differential equations,
Concordia University
,
2009
, available at http://cmvl.cs.concordia.ca/auto/.
27.
P.
Bergé
,
Y.
Pomeau
, and
C.
Vidal
,
Order Within Chaos: Towards a Deterministic Approach to Turbulence
(
Wiley-Interscience
,
1984
).
28.
A. J.
Babchin
,
A. L.
Frenkel
,
B. G.
Levich
, and
G. I.
Sivashinsky
, “
Nonlinear saturation of Rayleigh–Taylor instability in thin films
,”
Phys. Fluids
26
,
3159
(
1983
).
29.
A. P.
Hooper
and
W. G. C.
Boyd
, “
Shear-flow instability at the interface between two viscous fluids
,”
J. Fluid Mech.
128
,
507
528
(
1983
).
30.
A.
Kalogirou
,
R.
Cîmpeanu
,
E. E.
Keaveny
, and
D. T.
Papageorgiou
, “
Capturing nonlinear dynamics of two-fluid Couette flows with asymptotic models
,”
J. Fluid Mech.
806
,
R1
(
2016
).
You do not currently have access to this content.