The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.

1.
Ajmani
,
R. S.
,
Metter
,
E. J.
,
Jaykumar
,
R.
,
Ingram
,
D. K.
,
Spangler
,
E. L.
,
Abugo
,
O. O.
, and
Rifkind
,
J. M.
, “
Hemodynamic changes during aging associated with cerebral blood flow and impaired cognitive function
,”
Neurobiol. Aging
21
(
2
),
257
269
(
2000
).
2.
Baskurt
,
O. K.
, “
In vivo correlates of altered blood rheology
,”
Biorheology
45
(
6
),
629
638
(
2008
).
3.
Baskurt
,
O. K.
and
Meiselman
,
H. J.
, “
Blood rheology and hemodynamics
,”
Semin. Thromb. Hemostasis
29
(
5
),
435
450
(
2003
).
4.
Berli
,
C. L. A.
and
Quemada
,
D.
, “
Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements
,”
Biorheology
38
(
1
),
27
38
(
2001
).
5.
Brands
,
J.
,
Kliner
,
D.
,
Lipowsky
,
H. H.
,
Kameneva
,
M. V.
,
Villanueva
,
F. S.
, and
Pacella
,
J. J.
, “
New insights into the microvascular mechanisms of drag reducing polymers: Effect on the cell-free layer
,”
PLoS ONE
8
(
10
),
e77252
(
2013
).
6.
Chen
,
J.
and
Huang
,
Z.
, “
Analytical model for effects of shear rate on rouleau size and blood viscosity
,”
Biophys. Chem.
58
(
3
),
273
279
(
1996
).
7.
Chien
,
S.
,
Sung
,
L. A.
,
Kim
,
S.
,
Burke
,
A. M.
, and
Usami
,
S.
, “
Determination of aggregation force in rouleaux by fluid mechanical technique
,”
Microvasc. Res.
13
(
3
),
327
333
(
1977
).
8.
Cokelet
,
G. R.
, “
Rheology and hemodynamics
,”
Annu. Rev. Physiol.
42
,
311
324
(
1980
).
9.
Damiano
,
E. R.
,
Long
,
D. S.
, and
Smith
,
M. L.
, “
Estimation of viscosity profiles using velocimetry data from parallel flows of linearly viscous fluids: Application to microvascular haemodynamics
,”
J. Fluid Mech.
512
,
1
19
(
2004
).
10.
Demirkaya
,
O.
,
Asyali
,
M. H.
, and
Shoukri
,
M. M.
, “
Segmentation of cDNA microarray spots using Markov random field modeling
,”
Bioinformatics
21
(
13
),
2994
3000
(
2005
).
11.
Gonzales
,
R.
,
Woods
,
R.
, and
Eddins
,
S.
,
Digital Image Processing Using Matlab
(
Prentice Hall
,
Upper Saddle River, New Jersey
,
2004
).
12.
Kaliviotis
,
E.
and
Yianneskis
,
M.
, “
Fast response characteristics of red blood cell aggregation
,”
Biorheology
45
(
6
),
639
649
(
2008
).
13.
Kaliviotis
,
E.
and
Yianneskis
,
M.
, “
An energy-rate based blood viscosity model incorporating aggregate network dynamics
,”
Biorheology
46
(
6
),
487
508
(
2009
).
14.
Kaliviotis
,
E.
and
Yianneskis
,
M.
, “
Blood viscosity modelling: Influence of aggregate network dynamics under transient conditions
,”
Biorheology
48
(
2
),
127
147
(
2011
).
15.
Kaliviotis
,
E.
,
Dusting
,
J.
, and
Balabani
,
S.
, “
Spatial variation of blood viscosity: Modelling using shear fields measured by a μPIV based technique
,”
Med. Eng. Phys.
33
(
7
),
824
831
(
2011
).
16.
Kaliviotis
,
E.
,
Dusting
,
J.
,
Sherwood
,
J. M.
, and
Balabani
,
S.
, “
Quantifying local characteristics of velocity, aggregation and hematocrit of human erythrocytes in a microchannel flow
,”
Clin. Hemorheol. Microcirc.
63
(
2
),
123
148
(
2016a
).
17.
Kaliviotis
,
E.
,
Pasias
,
D.
,
Sherwood
,
J. M.
, and
Balabani
,
S.
, “
Red blood cell aggregate flux in a bifurcating microchannel
,”
Med. Eng. Phys.
48
,
23
(
2016b
).
18.
Kaliviotis
,
E.
,
Sherwood
,
J. M.
, and
Balabani
,
S.
, “
Partitioning of red blood cell aggregates in bifurcating microscale flows
,”
Sci. Rep.
7
,
44563
(
2017
).
19.
Koutsiaris
,
A. G.
, “
Correlation of axial blood velocity to venular and arteriolar diameter in the human eye in vivo
,”
Clin. Hemorheol. Microcirc.
61
(
3
),
429
438
(
2016a
).
20.
Koutsiaris
,
A. G.
, “
Wall shear stress in the human eye microcirculation in vivo, segmental heterogeneity and performance of in vitro cerebrovascular models
,”
Clin. Hemorheol. Microcirc.
63
(
1
),
15
33
(
2016b
).
21.
Leble
,
V.
,
Lima
,
R.
,
Dias
,
R.
,
Fernandes
,
C.
,
Ishikawa
,
T.
,
Imai
,
Y.
, and
Yamaguchi
,
T.
, “
Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation
,”
Biomicrofluidics
5
(
4
),
044120
(
2011
).
22.
Lee
,
B.
,
Xue
,
S.
,
Nam
,
J.
,
Lim
,
H.
, and
Shin
,
S.
, “
Determination of the blood viscosity and yield stress with a pressure- scanning capillary hemorheometer using constitutive models
,”
Korea Aust. Rheol. J.
23
(
1
),
1
6
(
2011
).
23.
Lee
,
T.
,
Choi
,
M.
,
Kopacz
,
A. M.
,
Yun
,
S.
,
Liu
,
W. K.
, and
Decuzzi
,
P.
, “
On the near-wall accumulation of injectable particles in the microcirculation: Smaller is not better
,”
Sci. Rep.
3
,
2079
(
2013
).
24.
Lima
,
R.
,
Wada
,
S.
,
Tsubota
,
K. I.
, and
Yamaguchi
,
T.
, “
Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel
,”
Meas. Sci. Technol.
17
(
4
),
797
808
(
2006
).
25.
Lima
,
R.
,
Ishikawa
,
T.
,
Imai
,
Y.
,
Takeda
,
M.
,
Wada
,
S.
, and
Yamaguchi
,
T.
, “
Radial dispersion of red blood cells in blood flowing through glass capillaries: The role of hematocrit and geometry
,”
J. Biomech.
41
(
10
),
2188
2196
(
2008a
).
26.
Lima
,
R.
,
Wada
,
S.
,
Tanaka
,
S.
,
Takeda
,
M.
,
Ishikawa
,
T.
,
Tsubota
,
K. I.
,
Imai
,
Y.
, and
Yamaguchi
,
T.
, “
In vitro blood flow in a rectangular PDMS microchannel: Experimental observations using a confocal micro-PIV system
,”
Biomed. Microdevices
10
(
2
),
153
167
(
2008b
).
27.
Lipowsky
,
H. H.
, “
Microvascular rheology and hemodynamics
,”
Microcirculation
12
(
1
),
5
15
(
2005
).
28.
Lipowsky
,
H. H.
,
Usami
,
S.
, and
Chien
,
S.
, “
In vivo measurements of ‘apparent viscosity’ and microvessel hematocrit in the mesentery of the cat
,”
Microvasc. Res.
19
(
3
),
297
319
(
1980a
).
29.
Lipowsky
,
H. H.
,
Usami
,
S.
,
Chien
,
S.
, and
Pittman
,
R. N.
, “
Hematocrit determination in small bore tubes from optical density measurements under white light illumination
,”
Microvasc. Res.
20
(
1
),
51
70
(
1980b
).
30.
Long
,
D. S.
,
Smith
,
M. L.
,
Pries
,
A. R.
,
Ley
,
K.
, and
Damiano
,
E. R.
, “
Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution
,”
Proc. Natl. Acad. Sci. U. S. A.
101
(
27
),
10060
(
2004
).
31.
Mehri
,
R.
,
Laplante
,
J.
,
Mavriplis
,
C.
, and
Fenech
,
M.
, “
Investigation of blood flow analysis and red blood cell aggregation
,”
J. Med. Biol.
34
(
5
),
469
474
(
2014
).
32.
Moyers-Gonzalez
,
M.
,
Owens
,
R. G.
, and
Fang
,
J.
, “
A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow
,”
J. Fluid Mech.
617
,
327
354
(
2008
).
33.
Natsume
,
T.
and
Yoshimoto
,
M.
, “
A method to estimate the average shear rate in a bubble column using liposomes
,”
Ind. Eng. Chem. Res.
52
(
51
),
18498
18502
(
2013
).
34.
Owens
,
R. G.
, “
A new microstructure-based constitutive model for human blood
,”
J. Non-Newtonian Fluid Mech.
140
(
1–3
),
57
70
(
2006
).
35.
Pries
,
A. R.
,
Ley
,
K.
,
Claassen
,
M.
, and
Gaehtgens
,
P.
, “
Red cell distribution at microvascular bifurcations
,”
Microvasc. Res.
38
(
1
),
81
101
(
1989
).
36.
Pries
,
A. R.
,
Neuhaus
,
D.
, and
Gaehtgens
,
P.
, “
Blood viscosity in tube flow: Dependence on diameter and hematocrit
,”
Am. J. Physiol.–Heart Circ. Physiol.
263
(
6
),
H1770
H1778
(
1992
).
37.
Pries
,
A. R.
and
Secomb
,
T. W.
, “
Rheology of the microcirculation
,”
Clin. Hemorheol. Microcirc.
29
(
3-4
),
143
148
(
2003
).
38.
Pries
,
A. R.
and
Secomb
,
T. W.
, “
Microvascular blood viscosity in vivo and the endothelial surface layer
,”
Am. J. Physiol.–Heart Circ. Physiol.
289
(
6
),
H2657
H2664
(
2005
).
39.
Quemada
,
D.
, “
A non-linear Maxwell model of biofluids: Application to normal blood
,”
Biorheology
30
(
3-4
),
253
265
(
1993
).
40.
Quemada
,
D.
, “
Rheological modelling of complex fluids: IV: Thixotropic and ‘thixoelastic’ behaviour. Start-up and stress relaxation, creep tests and hysteresis cycles
,”
Eur. Phys. J.: Appl. Phys.
5
(
2
),
191
207
(
1999
).
41.
Sampaio
,
D.
,
Lopes
,
D.
, and
Semiao
,
V.
, “
Horse and dog blood flows in PDMS rectangular microchannels: Experimental characterization of the plasma layer under different flow conditions
,”
Exp. Therm. Fluid Sci.
68
,
205
215
(
2015
).
42.
Secomb
,
T. W.
, “
Blood flow in the microcirculation
,”
Annu. Rev. Fluid Mech.
49
,
443
(
2017
).
43.
Sherwood
,
J. M.
,
Dusting
,
J.
,
Kaliviotis
,
E.
, and
Balabani
,
S.
, “
The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel
,”
Biomicrofluidics
6
(
2
),
024119
(
2012a
).
44.
Sherwood
,
J. M.
,
Kaliviotis
,
E.
,
Dusting
,
J.
, and
Balabani
,
S.
, “
Hematocrit, viscosity and velocity distributions of aggregating and non-aggregating blood in a bifurcating microchannel
,”
Biomech. Model. Mechanobiol.
13
(
2
),
259
273
(
2012b
).
45.
Sherwood
,
J. M.
,
Holmes
,
D.
,
Kaliviotis
,
E.
, and
Balabani
,
S.
, “
Spatial distributions of red blood cells significantly alter local haemodynamics
,”
PLoS ONE
9
(
6
),
e100473
(
2014
).
46.
Skalak
,
R.
and
Chien
,
S.
, “
Theoretical models of rouleau formation and disaggregation
,”
Ann. N. Y. Acad. Sci.
416
,
138
(
1983
).
47.
Snabre
,
P.
and
Mills
,
P.
, “
II. Rheology of weakly flocculated suspensions of viscoelastic particles
,”
J. Phys. III
6
(
12
),
1835
1855
(
1996
).
48.
Toth
,
K.
,
Kesmarky
,
G
, and
Alexy
,
T.
, in
Handbook of Hemorheolgy and Hemodynamics
, Clinical Significance of Hemorheological Alterations, edited by
O. K.
Baskurt
,
M. R.
Hardeman
,
M. W.
Rampling
, and
H. J.
Meiselman
(
IOS Press
,
2007
), pp.
392
432
.
49.
Yilmaz
,
F.
and
Gundogdu
,
M. Y.
, “
A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions
,”
Korea Aust. Rheol. J.
20
(
4
),
197
211
(
2008
).
You do not currently have access to this content.