Recently, Mwasame et al. [“On the macroscopic modeling of dilute emulsions under flow,” J. Fluid Mech. 831, 433 (2017)] developed a macroscopic model for the dynamics and rheology of a dilute emulsion with droplet morphology in the limit of negligible particle inertia using the bracket formulation of non-equilibrium thermodynamics of Beris and Edwards [Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press on Demand, 1994)]. Here, we improve upon that work to also account for particle inertia effects. This advance is facilitated by using the bracket formalism in its inertial form that allows for the natural incorporation of particle inertia effects into macroscopic level constitutive equations, while preserving consistency to the previous inertialess approximation in the limit of zero inertia. The parameters in the resultant Particle Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model are selected by utilizing literature-available mesoscopic theory for the rheology at small capillary and particle Reynolds numbers. At steady state, the lowest level particle inertia effects can be described by including an additional non-affine inertial term into the evolution equation for the conformation tensor, thereby generalizing the Gordon-Schowalter time derivative. This additional term couples the conformation and vorticity tensors and is a function of the Ohnesorge number. The rheological and microstructural predictions arising from the PITCEE model are compared against steady-shear simulation results from the literature. They show a change in the signs of the normal stress differences that is accompanied by a change in the orientation of the major axis of the emulsion droplet toward the velocity gradient direction with increasing Reynolds number, capturing the two main signatures of particle inertia reported in simulations.

1.
J. G.
Oldroyd
, “
On the formulation of rheological equations of state
,”
Proc. Roy. Soc. London A
200
,
523
(
1950
).
2.
R. J.
Gordon
and
W. R.
Schowalter
, “
Anisotropic fluid theory: A different approach to the dumbbell theory of dilute polymer solutions
,”
Trans. Soc. Rheol.
16
,
79
(
1972
).
3.
M. W.
Johnson
and
D.
Segalman
, “
A model for viscoelastic fluid behavior which allows non-affine deformation
,”
J. Non-Newtonian Fluid Mech.
2
,
255
(
1977
).
4.
C.-J.
Lin
,
J. H.
Peery
, and
W. R.
Schowalter
, “
Simple shear flow round a rigid sphere: Inertial effects and suspension rheology
,”
J. Fluid Mech.
44
,
1
(
1970
).
5.
H.
Haddadi
and
J. F.
Morris
, “
Microstructure and rheology of finite inertia neutrally buoyant suspensions
,”
J. Fluid Mech.
749
,
431
(
2014
).
6.
H.
Haddadi
and
J. F.
Morris
, “
Topology of pair-sphere trajectories in finite inertia suspension shear flow and its effects on microstructure and rheology
,”
Phys. Fluids
27
,
043302
(
2015
).
7.
P. L.
Maffettone
and
M.
Minale
, “
Equation of change for ellipsoidal drops in viscous flow
,”
J. Non-Newtonian Fluid Mech.
78
,
227
(
1998
).
8.
E. D.
Wetzel
and
C. L.
Tucker
, “
Area tensors for modeling microstructure during laminar liquid-liquid mixing
,”
Int. J. Multiphase Flow
25
,
35
(
1999
).
9.
E. D.
Wetzel
and
C. L.
Tucker
, “
Droplet deformation in dispersions with unequal viscosities and zero interfacial tension
,”
J. Fluid Mech.
426
,
199
(
2001
).
10.
M.
Doi
and
T.
Ohta
, “
Dynamics and rheology of complex interfaces. I
,”
J. Chem. Phys.
95
,
1242
(
1991
).
11.
B. J.
Edwards
and
M.
Dressler
, “
A rheological model with constant approximate volume for immiscible blends of ellipsoidal droplets
,”
Rheol. Acta
42
,
326
(
2003
).
12.
M.
Dressler
and
B. J.
Edwards
, “
The influence of matrix viscoelasticity on the rheology of polymer blends
,”
Rheol. Acta
43
,
257
(
2004
).
13.
M.
Grmela
,
M.
Bousmina
, and
J.-F.
Palierne
, “
On the rheology of immiscible blends
,”
Rheol. Acta
40
,
560
(
2001
).
14.
W.
Yu
,
M.
Bousmina
,
M.
Grmela
,
J.-F.
Palierne
, and
C.
Zhou
, “
Quantitative relationship between rheology and morphology in emulsions
,”
J. Rheol.
46
,
1381
(
2002
).
15.
A.
Ait-Kadi
,
A.
Ramazani
,
M.
Grmela
, and
C.
Zhou
, “
‘Volume preserving’ rheological models for polymer melts and solutions using the GENERIC formalism
,”
J. Rheol.
43
,
51
(
1999
).
16.
M.
Grmela
,
A.
Ammar
,
F.
Chinesta
, and
G.
Maîtrejean
, “
A mesoscopic rheological model of moderately concentrated colloids
,”
J. Non-Newtonian Fluid Mech.
212
,
1
(
2014
).
17.
M.
Minale
, “
Models for the deformation of a single ellipsoidal drop: A review
,”
Rheol. Acta
49
,
789
(
2010
).
18.
P. M.
Mwasame
,
N. J.
Wagner
, and
A. N.
Beris
, “
On the macroscopic modeling of dilute emulsions under flow
,”
J. Fluid Mech.
831
,
433
(
2017
).
19.
P. M.
Kulkarni
and
J. F.
Morris
, “
Suspension properties at finite Reynolds number from simulated shear flow
,”
Phys. Fluids
20
,
040602
(
2008
).
20.
A.
Nicolas
,
J.-L.
Barrat
, and
J.
Rottler
, “
Effects of inertia on the steady-shear rheology of disordered solids
,”
Phys. Rev. Lett.
116
,
058303
(
2016
).
21.
E.
Linares-Guerrero
,
M. L.
Hunt
, and
R.
Zenit
, “
Effects of inertia and turbulence on rheological measurements of neutrally buoyant suspensions
,”
J. Fluid Mech.
811
,
525
(
2017
).
22.
X.
Li
and
K.
Sarkar
, “
Effects of inertia on the rheology of a dilute emulsion of drops in shear
,”
J. Rheol.
49
,
1377
(
2005
).
23.
R. V.
Raja
,
G.
Subramanian
, and
D. L.
Koch
, “
Inertial effects on the rheology of a dilute emulsion
,”
J. Fluid Mech.
646
,
255
(
2010
).
24.
S.
Farokhirad
,
T.
Lee
, and
J. F.
Morris
, “
Effects of inertia and viscosity on single droplet deformation in confined shear flow
,”
Commun. Comput. Phys.
13
,
706
(
2013
).
25.
P.
Srivastava
,
A. R.
Malipeddi
, and
K.
Sarkar
, “
Steady shear rheology of a viscous emulsion in the presence of finite inertia at moderate volume fractions: Sign reversal of normal stress differences
,”
J. Fluid Mech.
805
,
494
(
2016
).
26.
W. R.
Schowalter
,
C. E.
Chaffey
, and
H.
Brenner
, “
Rheological behavior of a dilute emulsion
,”
J. Colloid Interface Sci.
26
,
152
(
1968
).
27.
C. E.
Chaffey
and
H.
Brenner
, “
A second-order theory for shear deformation of drops
,”
J. Colloid Interface Sci.
24
,
258
(
1967
).
28.
S.
Torza
,
R. G.
Cox
, and
S. G.
Mason
, “
Particle motions in sheared suspensions XXVII. Transient and steady deformation and burst of liquid drops
,”
J. Colloid Interface Sci.
38
,
395
(
1972
).
29.
T. G.
Mezger
,
The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers
(
Vincentz Network GmbH & Co. KG
,
2006
).
30.
N. A.
Frankel
and
A.
Acrivos
, “
The constitutive equation for a dilute emulsion
,”
J. Fluid Mech.
44
,
65
(
1970
).
31.
D.
Barthès-Biesel
and
A.
Acrivos
, “
Deformation and burst of a liquid droplet freely suspended in a linear shear field
,”
J. Fluid Mech.
61
,
1
(
1973
).
32.
J. M.
Rallison
, “
Note on the time-dependent deformation of a viscous drop which is almost spherical
,”
J. Fluid Mech.
98
,
625
(
1980
).
33.
F. M.
Leslie
, “
Some constitutive equations for anisotropic fluids
,”
Q. J. Mech. Appl. Math.
19
,
357
(
1966
).
34.
J. L.
Ericksen
, “
Anisotropic fluids
,”
Arch. Ration. Mech. Anal.
4
,
231
(
1959
).
35.
A. N.
Beris
and
B. J.
Edwards
,
Thermodynamics of Flowing Systems: With Internal Microstructure
(
Oxford University Press on Demand
,
1994
).
36.
M.
Dressler
, “
Inertial theories for dilute viscoelastic polymer blends with a volume preserving microstructure
,”
J. Non-Newtonian Fluid Mech.
173
,
40
(
2012
).
37.
G.
Ryskin
and
J. M.
Rallison
, “
The extensional viscosity of a dilute suspension of spherical particles at intermediate microscale Reynolds numbers
,”
J. Fluid Mech.
99
,
513
(
1980
).
38.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics
, 2nd ed. (
Wiley-Interscience,
1987
).
39.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions: Butterworths Series in Chemical Engineering
(
Butterworth-Heinemann
,
1988
).
40.
D.
Xu
,
J.
Cui
,
R.
Bansal
,
X.
Hao
,
J.
Liu
,
W.
Chen
, and
B. S.
Peterson
, “
The ellipsoidal area ratio: An alternative anisotropy index for diffusion tensor imaging
,”
Magn. Reson. Imaging
27
,
311
(
2009
).
41.
B. J.
Edwards
,
M.
Dressler
,
M.
Grmela
, and
A.
Ait-Kadi
, “
Rheological models with microstructural constraints
,”
Rheol. Acta
42
,
64
(
2003
).
42.
G. H.
McKinley
and
M.
Renardy
, “
Wolfgang von Ohnesorge
,”
Phys. Fluids
23
,
127101
(
2011
).
43.
T.
Jansseune
,
J.
Mewis
,
P.
Moldenaers
,
M.
Minale
, and
P. L.
Maffettone
, “
Rheology and rheological morphology determination in immiscible two-phase polymer model blends
,”
J. Non-Newtonian Fluid Mech.
93
,
153
(
2000
).
44.
G. K.
Batchelor
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
(
1970
).
You do not currently have access to this content.