In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.

1.
A.
Gemant
, “
Komplexe viskosität
,”
Naturwissenschaften
23
(
25
),
406
407
(
1935
).
2.
A.
Gemant
, “
The conception of a complex viscosity and its application to dielectrics
,”
Trans. Faraday Soc.
31
(
175, Part II
),
1582
1590
(
1935
).
3.
R. B.
Bird
and
A. J.
Giacomin
, “
Who conceived the complex viscosity?
,”
Rheol. Acta
51
(
6
),
481
486
(
2012
).
4.
A. J.
Giacomin
and
J. M.
Dealy
, “
Using large-amplitude oscillatory shear
,” in
Rheological Measurement
, 2nd ed., edited by
A. A.
Collyer
and
D. W.
Clegg
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1998
), Chap. 11, pp.
327
356
.
5.
K. S.
Cho
,
Viscoelasticity of Polymers: Theory and Numerical Algorithms
, Springer Series in Materials Science Vol. 241 (
Springer
,
Dordrecht
,
2016
).
6.
K.
Hyun
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
(
12
),
1697
1753
(
2011
).
7.
F.
Ding
,
A. J.
Giacomin
,
R. B.
Bird
, and
C.-B.
Kweon
, “
Viscous dissipation with fluid inertia in oscillatory shear flow
,”
J. Non-Newtonian Fluid Mech.
86
(
3
),
359
374
(
1999
).
8.
A. J.
Giacomin
,
R. B.
Bird
,
C.
Aumnate
,
A. M.
Mertz
,
A. M.
Schmalzer
, and
A. W.
Mix
, “
Viscous heating in large-amplitude oscillatory shear flow
,”
Phys. Fluids
24
(
10
),
103101
(
2012
).
9.
A. J.
Giacomin
,
R. B.
Bird
, and
H. M.
Baek
, “
Temperature rise in large-amplitude oscillatory shear flow from shear stress measurements
,”
Ind. Eng. Chem. Res.
52
,
2008
2017
(
2013
).
10.
A. J.
Giacomin
and
R. B.
Bird
, “
Erratum: Official nomenclature of the society of rheology: −η″
,”
J. Rheol.
55
(
4
),
921
923
(
2011
).
11.
S. A.
Rogers
, “
In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity
,”
Rheol. Acta
56
(
5
),
501
525
(
2017
).
12.
Ad Hoc Committee on Official Nomenclature and Symbols
, “
Official symbols and nomenclature of the society of rheology
,”
J. Rheol.
57
(
4
),
1047
1055
(
2013
).
13.
A. J.
Giacomin
and
J. M.
Dealy
, “
Large-amplitude oscillatory shear
,” edited by
A. A.
Collyer
,
Techniques in Rheological Measurement
(
Chapman and Hall
,
London and New York; Kluwer Academic Publishers
, Dordrecht,
1993
), Chap. 4, pp.
99
121
.
14.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
(
19–20
),
1081
1099
(
2011
).
15.
A. J.
Giacomin
,
P. H.
Gilbert
,
D.
Merger
, and
M.
Wilhelm
, “
Large-amplitude oscillatory shear: Comparing parallel-disk with cone-plate flow
,”
Rheol. Acta
54
(
4
),
263
285
(
2015
).
16.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
New York
,
1977
), Vol. 1.
17.
J. G.
Oldroyd
, “
Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids
,”
Proc. R. Soc. A
245
(
1241
),
278
297
(
1958
).
18.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
(
4
),
043101
(
2017
).
19.
S. I.
Abdel-Khalik
,
O.
Hassager
, and
R. B.
Bird
, “
The Goddard expansion and the kinetic theory for solutions of rodlike macromolecules
,”
J. Chem. Phys.
61
,
4312
4316
(
1974
).
20.
R. B.
Bird
,
O.
Hassager
, and
S. I.
Abdel-Khalik
, “
Co-rotational Rheological models and the Goddard expansion
,”
AIChE J.
20
(
6
),
1041
1066
(
1974
).
21.
R. B.
Bird
, “
A modification of the Oldroyd model for rigid dumbbell suspensions with Brownian motion
,”
Z. Angew. Math. Phys. ZAMP
23
(
1
),
157
159
(
1972
).
22.
R. B.
Bird
and
A. J.
Giacomin
, “
Polymer fluid dynamics: Continuum and molecular approaches
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
479
507
(
2016
).
23.
J. L.
Lumley
, “
Applicability of the Oldroyd constitutive equation to flow of dilute polymer solutions
,”
Phys. Fluids
14
(
11
),
2282
2284
(
1971
).
24.
J. L.
Lumley
, “
Erratum: Applicability of the Oldroyd constitutive equation to flow of dilute polymer solutions
,”
Phys. Fluids
15
(
11
),
2081
(
1972
).
25.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol. 1.
26.
R. B.
Bird
,
O.
Hassager
,
R. C.
Armstrong
, and
C.
Curtiss
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
New York
,
1977
), Vol. 2.
27.
R. B.
Bird
and
R. C.
Armstrong
, “
Time-dependent flows of dilute solutions of rodlike macromolecules
,”
J. Chem. Phys.
56
(
7
),
3680
3682
(
1972
).
28.
A. J.
Giacomin
and
C.
Saengow
, “
Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow
,” PRG Report No. 030, QU-CHEE-PRG-TR–2017-30,
Polymers Research Group, Chemical Engineering Department, Queen’s University
,
Kingston, Canada
,
May, 2017
, pp.
1
4
.
29.
J. R.
Jones
, “
Flow of elastic-viscous liquids in pipes with cores (part one)
,”
J. Mec.
3
(
1
),
79
99
(
1964
).
30.
J. R.
Jones
and
R. S.
Jones
, “
Flow of elastico-viscous liquids in pipes with cores (part III)
,”
J. Mec.
5
(
3
),
375
395
(
1966
).
31.
R. S.
Jones
, “
Flow of an elastico-viscous liquid in a corrugated pipe
,”
J. Mec.
6
(
3
),
443
448
(
1967
).
32.
J. R.
Jones
, “
Flow of elastico-viscous liquids in pipes with cores (part two)
,”
J. Mec.
4
(
1
),
121
132
(
1965
).
33.
C. J.
Camilleri
and
J. R.
Jones
, “
The effect of a pressure gradient on the secondary flow of non-Newtonian liquids between non-intersecting cylinders
,”
Z. Angew. Math. Phys.
17
(
1
),
78
90
(
1966
).
34.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Extruding plastic pipe from eccentric dies
,”
J. Non-Newtonian Fluid Mech.
223
,
176
199
(
2015
).
35.
C.
Saengow
, “
Polymer process partitioning: Extruding plastic pipe
,” Ph.D. thesis,
Polymers Research Group, Chemical Engineering Department, Queen’s University
,
Kingston, Canada
,
2016
.
36.
C.
Saengow
, “
Polymer process partitioning approach: Plastic pipe extrusion
,” Ph.D. thesis,
Mechanical and Aerospace Engineering Department, King Mongkut’s University of Technology North Bangkok
,
Bangkok, Thailand
,
2016
.
37.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Knuckle formation from melt elasticity in plastic pipe extrusion
,”
J. Non-Newtonian Fluid Mech.
242
,
11
22
(
2017
).
38.
C.
Saengow
,
A. J.
Giacomin
,
P. H.
Gilbert
, and
C.
Kolitawong
, “
Reflections on inflections
,”
Korea-Aust. Rheol. J.
27
(
4
),
267
285
(
2015
).
39.
C.
Saengow
and
A. J.
Giacomin
, “
Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow
,”
Phys. Fluids
29
,
121601
(
2017
).
40.
C.
Saengow
and
A. J.
Giacomin
, “
Strain sweeps from Oldroyd 8-constant framework
,”
AIP Conf. Proc.
1843
(
1
),
040003
(
2017
).
41.
B.
Debbaut
and
H.
Burhin
, “
Large amplitude oscillatory shear and Fourier-transform rheology for a high-density polyethylene: Experiments and numerical simulation
,”
J. Rheol.
46
(
5
),
1155
1176
(
2002
).
42.
T.
Neidhöfer
,
M.
Wilhelm
, and
B.
Debbaut
, “
Fourier-transform rheology experiments and finite-element simulations on linear polystyrene solutions
,”
J. Rheol.
47
(
6
),
1351
1371
(
2003
).
43.
I. F.
MacdonaId
,
B. D.
Marsh
, and
E.
Ashare
, “
Rheological behavior for large amplitude oscillatory motion
,”
Chem. Eng. Sci.
24
(
10
),
1615
1625
(
1969
).
44.
I. F.
MacdonaId
, “
Time-dependent nonlinear behavior of viscoelastic fluids
,” Ph.D. thesis,
Chemical Engineering Department, University of Wisconsin-Madison
,
Madison
,
1968
.
45.
I. F.
MacdonaId
, “
Large amplitude oscillatory shear flow of viscoelastic materials
,”
Rheol. Acta
14
(
9
),
801
811
(
1975
).
46.
A. J.
Giacomin
,
R. S.
Jeyaseelan
,
T.
Samurkas
, and
J. M.
Dealy
, “
Validity of separable BKZ model for large amplitude oscillatory shear
,”
J. Rheol.
37
(
5
),
811
826
(
1993
).
47.
P.
Wapperom
,
A.
Leygue
, and
R.
Keunings
, “
Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model
,”
J. Non-Newtonian Fluid Mech.
130
(
2
),
63
76
(
2005
).
48.
R. S.
Jeyaseelan
and
A. J.
Giacomin
, “
Network theory for polymer solutions in large amplitude oscillatory shear
,”
J. Non-Newtonian Fluid Mech.
148
(
1
),
24
32
(
2008
).
49.
J. A.
Yosick
,
A. J.
Giacomin
, and
P.
Moldenaers
, “
A kinetic network model for nonlinear flow behavior of molten plastics in both shear and extension
,”
J. Non-Newtonian Fluid Mech.
70
(
1
),
103
123
(
1997
).
50.
J. A.
Yosick
and
A. J.
Giacomin
, “
Can nonlinear deformation amplify subtle differences in linear viscoelasticity?
,”
J. Non-Newtonian Fluid Mech.
66
(
2
),
193
212
(
1996
).
51.
R. S.
Jeyaseelan
and
A. J.
Giacomin
, “
The role of temperature in the entanglement kinetics of a polymer melt
,”
J. Appl. Mech.
62
(
3
),
794
801
(
1995
).
52.
R. S.
Jeyaseelan
and
A. J.
Giacomin
, “
Structural network theory for a filled polymer melt in large amplitude oscillatory shear
,”
Polym. Gels Networks
3
(
2
),
117
133
(
1995
).
53.
A. J.
Giacomin
and
R. S.
Jeyaseelan
, “
A constitutive theory for polyolefins in large amplitude oscillatory shear
,”
Polym. Eng. Sci.
35
(
9
),
768
777
(
1995
).
54.
A. J.
Giacomin
and
R. S.
Jeyaseelan
, “
How affine is the entanglement network of molten low-density polyethylene in large amplitude oscillatory shear?
,”
J. Eng. Mater. Technol.
116
(
1
),
14
18
(
1994
).
55.
A. J.
Giacomin
,
R. S.
Jeyaseelan
, and
K. O.
Stanfill
, “
Relating blow moldability to large amplitude oscillatory shear behavior
,”
Polym. Eng. Sci.
34
(
11
),
888
893
(
1994
).
56.
R. S.
Jeyaseelan
and
A. J.
Giacomin
, “
Best fit for differential constitutive model parameters to non-linear oscillation data
,”
J. Non-Newtonian Fluid Mech.
47
,
267
280
(
1993
).
57.
A. J.
Giacomin
,
R. S.
Jeyaseelan
, and
J. G.
Oakley
, “
Structure dependent moduli in the contravariant derivative of structural network theories for melts
,”
J. Rheol.
37
(
1
),
127
132
(
1993
).
58.
R. S.
Jeyaseelan
,
A. J.
Giacomin
, and
J. G.
Oakley
, “
Simplification of network theory for polymer melts in nonlinear oscillatory shear
,”
AIChE J.
39
(
5
),
846
854
(
1993
).
59.
A. J.
Giacomin
and
J. G.
Oakley
, “
Structural network models for molten plastics evaluated in large amplitude oscillatory shear
,”
J. Rheol.
36
(
8
),
1529
1546
(
1992
).
60.
J.
Zhang
and
J.-P.
Qu
, “
正弦应变下聚合物熔体的非仿射网络结构模型
,”
力学与实践 (Mech. Eng.)
25
(
2
),
15
18
(
2003
).
61.
J.
Zhang
and
J.-P.
Qu
, “
Nonaffine network structural model for molten low-density polyethylene and high-density polyethylene in oscillatory shear
,”
J. Shanghai Univ. (Engl. Ed.)
6
(
4
),
292
296
(
2002
).
62.
J.
Zhang
and
J.-P.
Qu
, “
聚合物熔体的非仿射网络结构模型及其数值解
,”
力学季刊 (Chin. Q. Mech.)
24
,
96
(
2003
).
63.
T. S. K.
Ng
,
G. H.
McKinley
, and
R. H.
Ewoldt
, “
Large amplitude oscillatory shear flow of gluten dough: A model power-law gel
,”
J. Rheol.
55
(
3
),
627
654
(
2011
).
64.
H. G.
Sim
,
K. H.
Ahn
, and
S. J.
Lee
, “
Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: A guideline for classification
,”
J. Non-Newtonian Fluid Mech.
112
(
2
),
237
250
(
2003
).
65.
W. K.-W.
Tsang
and
J. M.
Dealy
, “
The use of large transient deformations to evaluate rheological models for molten polymers
,”
J. Non-Newtonian Fluid Mech.
9
(
3-4
),
203
222
(
1981
).
66.
W. K.-W.
Tsang
, “
The use of large transient deformations to elucidate structural phenomena and evaluate network models for molten polymers
,” Ph.D. thesis,
Department of Chemical Engineering, McGill University
,
Montreal, Canada
,
1981
.
67.
F.
Yziquel
,
P. J.
Carreau
,
M.
Moan
, and
P. A.
Tanguy
, “
Rheological modeling of concentrated colloidal suspensions
,”
J. Non-Newtonian Fluid Mech.
86
(
1
),
133
155
(
1999
).
68.
F.
Yziquel
, “
Étude du comportement rhéologique de suspensions modèles de fumée de silice
,” Ph.D. thesis,
Génie Chimique, École Polytechnique
,
Montréal, Canada
,
1998
.
69.
M.
Simhambhatla
and
A. I.
Leonov
, “
On the rheological modeling of viscoelastic polymer liquids with stable constitutive equations
,”
Rheol. Acta
34
(
3
),
259
273
(
1995
).
70.
F.
Yziquel
,
P. J.
Carreau
, and
P. A.
Tanguy
, “
Non-linear viscoelastic behavior of fumed silica suspensions
,”
Rheol. Acta
38
(
1
),
14
25
(
1999
).
71.
N.
Clemeur
,
R. P.
Rutgers
, and
B.
Debbaut
, “
On the evaluation of some differential formulations for the pom-pom constitutive model
,”
Rheol. Acta
42
(
3
),
217
231
(
2003
).
72.
T. Y.
Liu
,
D. S.
Soong
, and
M. C.
Williams
, “
Transient and steady rheology of polydisperse entangled melts. predictions of a kinetic network model and data comparisons
,”
J. Polym. Sci., Polym. Phys. Ed.
22
(
9
),
1561
1587
(
1984
).
73.
T. Y.
Liu
, “
Rheological transients in entangled polymeric fluids
,” Ph.D. thesis,
Chemical Engineering Department, University of California
,
Berkeley, Canada
,
1982
.
74.
A. I.
Isayev
and
C. A.
Hieber
, “
Oscillatory shear flow of polymeric systems
,”
J. Polym. Sci., Polym. Phys. Ed.
20
(
3
),
423
440
(
1982
).
75.
J. M.
Dealy
,
J. F.
Petersen
, and
T.-T.
Tee
, “
A concentric-cylinder rheometer for polymer melts
,”
Rheol. Acta
12
(
4
),
550
558
(
1973
).
76.
B.
Caswell
, “
The effect of finite boundaries on the motion of particles in non-Newtonian fluids
,”
Chem. Eng. Sci.
25
(
7
),
1167
1176
(
1970
).
77.
R. B.
Bird
,
W. E.
Stewart
,
E. N.
Lightfoot
, and
D. J.
Klingenberg
,
Introductory Transport Phenomena
(
John Wiley & Sons
,
New York
,
2015
).
78.
M. W.
Johnson
and
D.
Segalman
, “
A model for viscoelastic fluid behavior which allows non-affine deformation
,”
J. Non-Newtonian Fluid Mech.
2
(
3
),
255
270
(
1977
).
79.
J. G.
Kirkwood
and
R. J.
Plock
, “
Non-Newtonian viscoelastic properties of rod-like macromolecules in solution
,”
J. Chem. Phys.
24
(
4
),
665
669
(
1956
).
80.
J. G.
Kirkwood
and
R. J.
Plock
, “
Non-Newtonian viscoelastic properties of rod-like macromolecules in solution
,” in
Macromolecule (John Gamble Kirkwood Collected Works)
, edited by
P. L.
Auer
(
Gordon and Breach
,
NY
,
1967
).
81.
R. J.
Plock
, “
I. Non-Newtonian viscoelastic properties of rod-like macromolecules in solution. II. The Debye-Hückel, Fermi-Thomas theory of plasmas and liquid metals
,” Ph.D. thesis,
Yale University
,
New Haven, CT
,
1957
.
82.
E.
Paul
, “
Non-Newtonian viscoelastic properties of rodlike molecules in solution: Comment on a paper by Kirkwood and Plock
,”
J. Chem. Phys.
51
,
1271
1290
(
1969
).
83.
E. W.
Paul
, “
Some non-equilibrium problems for dilute solutions of macromolecules. Part I: The plane polygonal polymer
,” Ph.D. thesis,
Department of Chemistry, University of Oregon
,
Eugene, OR
,
1970
.
84.
N. A. K.
Bharadwaj
, “
Low dimensional intrinsic material functions uniquely identify rheological constitutive models and infer material microstructure
,” M.S. thesis,
Mechanical Engineering, University of Illinois at Urbana-Champaign
,
IL
,
2012
.
85.
K.
Walters
and
T. E. R.
Jones
, “
Further studies on the usefulness of the Weissenberg rheogoniometer
,” in
Proceedings of the Fifth International Congress on Rheology
(
University of Tokyo Press
,
Tokyo, University Park Press
, Baltimore,
1970
), Vol. 4, pp.
337
350
.
86.
K.
Walters
,
Rheometry
(
Chapman and Hall
,
London
,
1975
).
87.
E.
Paul
and
R. M.
Mazo
, “
Hydrodynamic properties of a plane-polygonal polymer, according to Kirkwood-Riseman theory
,”
J. Chem. Phys.
51
(
3
),
1102
1107
(
1969
).
88.
R. B.
Bird
,
H. R.
Warner
, Jr.
, and
D. C.
Evans
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,” in
Polymer Science (Fortschritte der Hochpolymeren-Forschung)
(
Springer, Berlin, Heidelberg
,
1971
), Vol. 8, pp.
1
90
.
89.
D. S.
Pearson
and
W. E.
Rochefort
, “
Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields
,”
J. Polym. Sci., Polym. Phys. Ed.
20
(
1
),
83
98
(
1982
).
90.
E.
Helfand
and
D. S.
Pearson
, “
Calculation of the nonlinear stress of polymers in oscillatory shear fields
,”
J. Polym. Sci., Polym. Phys. Ed.
20
(
7
),
1249
1258
(
1982
).
91.
X.-J.
Fan
and
R. B.
Bird
, “
A kinetic theory for polymer melts. VI. Calculation of additional material functions
,”
J. Non-Newtonian Fluid Mech.
15
(
3
),
341
373
(
1984
).
92.
W.
Yu
,
M.
Bousmina
,
M.
Grmela
, and
C.
Zhou
, “
Modeling of oscillatory shear flow of emulsions under small and large deformation fields
,”
J. Rheol.
46
(
6
),
1401
1418
(
2002
).
93.
周持
,
聚合物加工理论
(
科学出版社
,
北京市
,
2004
), ISBN: 7-03-012434-0.
94.
D. M.
Hoyle
, “
Constitutive modelling of branched polymer melts in non-linear response
,” Ph.D. thesis,
Department of Applied Mathematics, University of Leeds
,
Leeds, England
,
2010
.
95.
M. H.
Wagner
,
V. H.
Rolón-Garrido
,
K.
Hyun
, and
M.
Wilhelm
, “
Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers
,”
J. Rheol.
55
(
3
),
495
516
(
2011
).
96.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Corrigenda: ‘Large-amplitude oscillatory shear flow from the corotational Maxwell model’ [Journal of Non-Newtonian Fluid Mechanics, 166, 1081–1099 (2011)]
,”
J. Non-Newtonian Fluid Mech.
187–188
,
48
(
2012
).
97.
A. J.
Giacomin
and
R. B.
Bird
, “
Normal stress differences in large-amplitude oscillatory shear flow for the corotational ‘ANSR’ model
,”
Rheol. Acta
50
(
9–10
),
741
752
(
2011
).
98.
R. B.
Bird
,
A. J.
Giacomin
,
A. M.
Schmalzer
, and
C.
Aumnate
, “
Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
,”
J. Chem. Phys.
140
(
7
),
074904
(
2014
).
99.
R. L.
Thompson
,
A. A.
Alicke
, and
P. R.
de Souza Mendez
, “
Model-based material functions for SAOS and LAOS analyses
,”
J. Non-Newtonian Fluid Mech.
215
,
19
30
(
2015
).
100.
Y.
Bozorgi
, “
Multiscale simulation of the collective behavior of rodlike self-propelled particles in viscoelastic fluids
,” Ph.D. thesis,
Chemical and Biological Engineering, Rensselaer Polytechnic Institute
,
Troy, NY
,
2014
.
101.
Y.
Bozorgi
and
P. T.
Underhill
, “
Large-amplitude oscillatory shear rheology of Dilute active suspensions
,”
Rheol. Acta
53
(
12
),
899
909
(
2014
).
102.
A. J.
Giacomin
,
C.
Saengow
,
M.
Guay
, and
C.
Kolitawong
, “
Padé approximants for large-amplitude oscillatory shear flow
,”
Rheol. Acta
54
,
679
693
(
2015
).
103.
C.
Saengow
,
A. J.
Giacomin
,
N.
Khalaf
, and
M.
Guay
, “
Simple accurate expressions for shear stress in large-amplitude oscillatory shear flow
,” PRG Report No. 032, QU-CHEE-PRG-TR–2017-32,
Polymers Research Group, Chemical Engineering Department, Queen’s University
,
Kingston, Canada
,
May, 2017
, pp.
1
29
.
104.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow
,”
Macromol. Theory Simul.
24
(
4
),
352
392
(
2015
).
105.
D.
Merger
,
M.
Abbasi
,
J.
Merger
,
A. J.
Giacomin
,
C.
Saengow
, and
M.
Wilhelm
, “
Simple scalar model and analysis for large amplitude oscillatory shear
,”
Appl. Rheol.
26
(
5
),
53809
(
2016
).
106.
D.
Merger
, “
Large amplitude oscillatory shear investigations of colloidal systems: Experiments and constitutive model predictions
,” Ph.D. thesis,
Institut für Technische Chemie und Polymerchemie, Karlsruher Institut für Technologie
,
Karlsruhe, Germany
,
2015
.
107.
L. M.
Jbara
,
A. J.
Giacomin
, and
P. H.
Gilbert
, “
Macromolecular origins of fifth shear stress harmonic in large-amplitude oscillatory shear flow
,”
Nihon Reoroji Gakkaishi
44
(
5
),
289
302
(
2017
).
108.
C.
Saengow
and
A. J.
Giacomin
, “
Strain and frequency sweeps from Oldroyd 8-constant framework
,” PRG Report No. 031, QU-CHEE-PRG-TR–2017-31,
Polymers Research Group, Chemical Engineering Department, Queen’s University
,
Kingston, Canada
,
April, 2017
, pp.
1
56
.
109.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
, 2nd ed. (
John Wiley & Sons
,
New York
,
2007
).
110.
T.-T.
Tee
and
J. M.
Dealy
, “
Nonlinear viscoelasticity of polymer melts
,”
Trans. Soc. Rheol.
19
(
4
),
595
615
(
1975
).
111.
T.-T.
Tee
, “
Large amplitude oscillatory shearing of polymer melts
,” Ph.D. thesis,
Department of Chemical Engineering, McGill University
,
Montreal, Canada
,
1974
.
You do not currently have access to this content.