The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. [“Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach,” J. Non-Newtonian Fluid Mech. 221, 66–75 (2015)] for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only on x and the semi-width of the unyielded core is found to be given by σ(x) = −(1 + 1/n)h(x) + C, where n is the power-law exponent and the constant C depends on the Bingham number and the consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the pressure distribution is not affected by the yield-stress function. With the present model, the pressure is calculated numerically solving an integro-differential equation and then the position of the yield surface and the two velocity components are computed using analytical expressions. Some analytical solutions are also derived for channels of constant and linearly varying widths. The lubrication solutions for other geometries are calculated numerically. The implications of the pressure-dependence of the material parameters and the limitations of the method are discussed.

1.
H. A.
Barnes
, “
The yield stress–a review or ‘παντα ρει’–everything flows?
,”
J. Non-Newtonian Fluid Mech.
81
,
133
178
(
1999
).
2.
N. J.
Balmforth
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
3.
A.
Malkin
,
V.
Kulichikhin
, and
S.
Ilyin
, “
A modern look on yield stress fluids
,”
Rheol. Acta
56
,
177
188
(
2017
).
4.
M.
Dinkgreve
,
M. M.
Denn
, and
D.
Bonn
, “
‘Everything flows?’: Elastic effects on startup flows of yield-stress fluids
,”
Rheol. Acta
56
,
189
194
(
2017
).
5.
P.
Coussot
,
A.
Ya
, and
G.
Ovarlez
, “
Introduction: Yield stress–or 100 years of rheology
,”
Rheol. Acta
56
,
161
162
(
2017
).
6.
E. C.
Bingham
,
Fluidity and Plasticity
(
McGraw Hill
,
New-York
,
1922
).
7.
W. H.
Herschel
and
R.
Bulkley
, “
Measurement of consistency as applied to rubber-benzene solutions
,”
Am. Soc. Test. Proc.
26
,
621
633
(
1926
).
8.
E.
Mitsoulis
and
J.
Tsamopoulos
, “
Numerical simulations of complex yield-stress fluid flows
,”
Rheol. Acta
56
,
231
258
(
2017
).
9.
G. G.
Stokes
, “
On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids
,”
Trans. Cambridge Philos. Soc.
8
,
287
305
(
1845
).
10.
C.
Barus
, “
Isothermals, isopiestics and isometrics relative to viscosity
,”
Amer. J. Sci.
45
,
87
96
(
1893
).
11.
K. R.
Rajagopal
, “
On implicit constitutive theories for fluids
,”
J. Fluid Mech.
550
,
243
249
(
2006
).
12.
A.
Kalogirou
,
S.
Poyiadji
, and
G. C.
Georgiou
, “
Incompressible Poiseuille flows of Newtonian liquids with a pressure/dependent viscosity
,”
J. Non-Newtonian Fluid Mech.
166
,
413
419
(
2011
).
13.
A.
Goubert
,
J.
Vermant
,
P.
Moldenaers
,
A.
Göttfert
, and
B.
Ernst
, “
Comparison of measurement techniques for evaluating the pressure dependence of the viscosity
,”
Appl. Rheol.
11
,
26
37
(
2001
).
14.
M. M.
Denn
,
Polymer Melt Processing
(
Cambridge University Press
,
Cambridge
,
2008
).
15.
C.
Venner
and
A. A.
Lubrecht
,
Multilevel Methods in Lubrication
(
Elsevier
,
2000
).
16.
M. J.
Martín-Alfonso
,
F. J.
Martinez-Bozam
,
F. J.
Navarro
,
M.
Fernández
, and
C.
Gallegos
, “
Pressure-temperature-viscosity relationship for heavy petroleum fractions
,”
Fuel
86
,
227
233
(
2007
).
17.
J.
Málek
and
K. R.
Rajagopal
, “
Mathematical properties of the solutions to the equations governing the flow of fluids with pressure and shear rate dependent viscosities
,” in
Handbook of Mathematical Fluid Dynamics
(
Elsevier
,
2007
).
18.
M.
Renardy
, “
Parallel shear flows of fluids with a pressure-dependent viscosity
,”
J. Non-Newtonian Fluid Mech.
114
,
229
236
(
2003
).
19.
S. A.
Suslov
and
T. D.
Tran
, “
Revisiting plane Couette-Poiseuille flows of piezo-viscous fluid
,”
J. Non-Newtonian Fluid Mech.
154
,
170
178
(
2008
).
20.
H. M.
Laun
, “
Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts
,”
Rheol. Acta
42
,
295
308
(
2003
).
21.
J.
Hermoso
,
F.
Martinez-Boza
, and
C.
Gallegos
, “
Influence of viscosity modifier nature and concentration on the viscous behaviour of oil-based drilling fluids at high pressure
,”
Appl. Clay Sci.
87
,
14
21
(
2014
).
22.
S. O.
Osisanya
and
O. O.
Harris
, “
Evaluation of equivalent circulating density of drilling fluids under high pressure/high temperature conditions
,” in
SPE 97018, SPE Annual Technical Conference and Exhibition
(
Society of Petroleum Engineers
,
2005
).
23.
C. S.
Ibeh
, “
Investigation on the effects of ultra-high pressure and temperature on the rheological properties of oil-based drilling fluids
,” M.Sc. thesis,
Texas A&M University
,
2007
.
24.
I. R.
Ionescu
,
A.
Mangeney
,
F.
Bouchut
, and
O.
Roche
, “
Viscoplastic modeling of granular column collapse with pressure-dependent rheology
,”
J. Non-Newtonian Fluid Mech.
219
,
1
18
(
2015
).
25.
H. C. H.
Darley
and
G. R.
Gray
,
Composition and Properties of Drilling and Completion Fluids
(
Gulf Professional Publishing
,
Houston, TX
,
1988
).
26.
M. D.
Politte
, “
Invert oil mud rheology as a function of temperature and pressure
,” presented at the
SPE/IADC Drilling Conference
,
New Orleans, LA, USA
,
6–8 March 1985
, SPE Paper No. 13458.
27.
O. H.
Houwen
and
T.
Geehan
, “
Rheology of oil-base muds
,” in
SPE 15416, SPE Annual Technical Conference and Exhibition
(
Society of Petroleum Engineers
,
New Orleans
,
1986
).
28.
J.
Hermoso
,
F.
Martinez-Boza
, and
C.
Gallegos
, “
Combined effect of pressure and temperature on the viscous behaviour of all-oil drilling fluids
,”
Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv.
69
,
1283
1296
(
2014
).
29.
L.
Staron
,
P.-Y.
Lagrée
, and
S.
Popinet
, “
The granular silo as a continuum plastic flows: The hour-glass vs the clepsydra
,”
Phys. Fluids
24
,
103301
(
2012
).
30.
G.
Daviet
and
F.
Bertails-Descourbes
, “
Nonsmooth simulation of dense granular flows with pressure-dependent yield stress
,”
J. Non-Newtonian Fluid Mech.
234
,
15
35
(
2016
).
31.
N. L.
Khouja
,
N.
Roquet
, and
B.
Cazacliu
, “
Analysis of a regularized Bingham model with pressure-dependent yield stress
,”
J. Math. Fluid Mech.
17
,
723
739
(
2015
).
32.
L.
Fusi
, “
Non-isothermal flow of a Bingham fluid with pressure and temperature dependent viscosity
,”
Meccanica
52
,
3577
3592
(
2017
).
33.
L.
Fusi
,
A.
Farina
,
F.
Ross
, and
S.
Roscani
, “
Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach
,”
J. Non-Newtonian Fluid Mech.
221
,
66
75
(
2015
).
34.
I. A.
Frigaard
and
D. P.
Ryan
, “
Flow of a visco-plastic fluid in a channel of slowly varying width
,”
J. Non-Newtonian Fluid Mech.
123
,
67
83
(
2004
).
35.
A.
Putz
,
I. A.
Frigaard
, and
D. M.
Martinez
, “
On the lubrication paradox and the use of regularization methods for lubrication flows
,”
J. Non-Newtonian Fluid Mech.
163
,
62
77
(
2009
).
36.
L.
Fusi
,
A.
Farina
, and
F.
Rosso
, “
Bingham flows with pressure-dependent rheological parameters
,”
Int. J. Non-Linear Mech.
64
,
33
38
(
2014
).
37.
Y.
Damianou
and
G. C.
Georgiou
, “
On Poiseuille flows of a Bingham plastic with pressure-dependent rheological parameters
,”
J. Non-Newtonian Fluid Mech.
250
,
1
7
(
2017
).
38.
L.
Fusi
and
F.
Rosso
, “
Creeping flow of a Herschel-Bulkley fluid with pressure-dependent material moduli
,”
Eur. J. Appl. Math.
(in press).
39.
J. S.
Hesthaven
,
S.
Gottlieb
, and
D.
Gottlieb
,
Spectral Methods for Time-Dependent Problems
(
Cambridge University Press
,
Cambridge
,
2007
).
40.
N. J.
Balmforth
and
R. V.
Craster
, “
A consistent thin-layer theory for Bingham plastics
,”
J. Non-Newtonian Fluid Mech.
84
,
65
81
(
1999
).
You do not currently have access to this content.