The slip velocity of an industrial grade high molecular weight high-density polyethylene (HDPE) is studied in steady and dynamic shear experiments using a stress/strain controlled rotational rheometer equipped with a parallel partitioned plate geometry. Moreover, fluoroalkyl silane-based coating is used to understand the effect of surface energy on slip in steady and dynamic conditions. The multimode integral Kaye-Bernstein-Kearsley-Zapas constitutive model is applied to predict the transient shear response of the HDPE melt obtained from rotational rheometer. It is found that a dynamic slip model with a slip relaxation time is needed to adequately predict the experimental data at large shear deformations. Comparison of the results before and after coating shows that the slip velocity is largely affected by surface energy. Decreasing surface energy by coating increases slip velocity and decreases the slip relaxation time.

1.
A. V.
Ramamurthy
, “
Wall slip in viscous fluids and influence of materials of construction
,”
J. Rheol.
30
,
337
(
1986
).
2.
F.
Brochard
and
P. G.
de Gennes
, “
Shear-dependent slippage at a polymer/solid interface
,”
Langmuir
8
,
3033
(
1992
).
3.
S. G.
Hatzikiriakos
and
J. M.
Dealy
, “
Wall slip of molten high density polyethylene I. Sliding plate rheometer studies
,”
J. Rheol.
35
,
497
(
1991
).
4.
S. G.
Hatzikiriakos
and
J. M.
Dealy
, “
Wall slip of molten high density polyethylene. II. Capillary rheometer studies
,”
J. Rheol.
36
,
703
(
1992
).
5.
L. A.
Archer
,
Polymer Processing Instabilities: Control and Understanding
(
Marcel Dekker
,
New York
,
2005
).
6.
S. G.
Hatzikiriakos
, “
Wall slip of molten polymers
,”
Prog. Polym. Sci.
37
,
624
(
2012
).
7.
S. G.
Hatzikiriakos
, “
Slip mechanisms in complex fluid flows
,”
Soft Matter
11
,
7851
(
2015
).
8.
K. B.
Migler
,
H.
Hervet
, and
L.
Leger
, “
Slip transition of a polymer melt under shear stress
,”
Phys. Rev. Lett.
70
,
287
(
1993
).
9.
L.
Leger
,
H.
Hervet
,
G.
Massey
, and
E.
Durliat
, “
Wall slip in polymer melts
,”
J. Phys.: Condens. Matter
9
,
7719
(
1997
).
10.
D. S.
Kalika
and
M. M.
Denn
, “
Wall slip and extrudate distortion in linear low-density polyethylene
,”
J. Rheol.
31
,
815
(
1987
).
11.
D. A.
Hill
,
T.
Hasegawa
, and
M. M.
Denn
, “
On the apparent relation between adhesive failure and melt fracture
,”
J. Rheol.
34
,
891
(
1990
).
12.
M.
Ebrahimi
,
M.
Ansari
, and
S. G.
Hatzikiriakos
, “
Wall slip of polydisperse linear polymers using double reptation
,”
J. Rheol.
59
,
885
(
2015
).
13.
J. R. A.
Pearson
and
C. J. S.
Petrie
, “
On the melt-flow instability of extruded polymers
,” in
Polymer Systems
, edited by
R. E.
Wett
and
R. H.
Whorlow
(
Macmillan
,
London
,
1968
).
14.
M. D.
Graham
, “
Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows
,”
J. Rheol.
39
,
697
(
1995
).
15.
S. G.
Hatzikiriakos
and
N.
Kalogerakis
, “
A dynamic slip velocity model for molten polymers based on a network kinetic theory
,”
Rheol. Acta
33
,
38
(
1994
).
16.
S. G.
Hatzikiriakos
, “
A multimode interfacial constitutive equation for molten polymers
,”
J. Rheol.
39
,
61
(
1995
).
17.
S. K.
Lan
,
A. J.
Giacomin
, and
F.
Ding
, “
Dynamic slip and nonlinear viscoelasticity
,”
Polym. Eng. Sci.
40
,
507
(
2000
).
18.
M. H.
Wagner
, “
Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt
,”
Rheol. Acta
15
,
136
(
1976
).
19.
T. Y.
Liu
,
D. S.
Soong
, and
M. C.
Williams
, “
Time-dependent rheological properties and transient structural states of entangled polymeric liquids—A kinetic network model
,”
Polym. Eng. Sci.
21
,
675
(
1981
).
20.
I. B.
Kazatchkov
and
S. G.
Hatzikiriakos
, “
Relaxation effects of slip in shear flow of linear molten polymers
,”
Rheol. Acta
49
,
267
(
2010
).
21.
G.
Kaoullas
and
G. C.
Georgiou
, “
Start-up and cessation Newtonian Poiseuille and Couette flows with dynamic wall slip
,”
Meccanica
50
,
1747
(
2015
).
22.
F.
Snijkers
and
D.
Vlassopoulos
, “
Cone-partitioned-plate geometry for the ARES rheometer with temperature control
,”
J. Rheol.
55
,
1167
(
2011
).
23.
V.
Kumar
,
M.
Ansari
,
E.
Mitsoulis
, and
S. G.
Hatzikiriakos
, “
The effect of damping function on extrudate swell
,”
J. Non-Newtonian Fluid Mech.
236
,
73
(
2016
).
24.
S.
Moradi
,
S.
Kamal
,
P.
Englezos
, and
S. G.
Hatzikiriakos
, “
Femtosecond laser irradiation of metallic surfaces : Effects of laser parameters on superhydrophobicity
,”
Nanotechnology
24
,
415302
(
2013
).
25.
S.
Moradi
, “
Super-hydrophobic nanopatterned Interfaces: Optimization and manufacturing
,” Ph.D. dissertation (
UBC
,
Vancouver, Canada
,
2014
).
26.
J. M.
Chovelon
,
L.E.
Aarch
,
M.
Charbonnier
, and
M.
Romand
, “
Silanization of stainless steel surfaces: Influence of application parameters
,”
J. Adhes.
50
,
43
(
1995
).
27.
J.
Sagiv
, “
Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces
,”
J. Am. Chem. Soc.
102
,
92
(
1980
).
28.
A. C.
Papanastasiou
,
L. E.
Scriven
, and
C. W.
Macosko
, “
An integral constitutive equation for mixed flows: Viscoelastic characterization
,”
J. Rheol.
27
,
387
(
1983
).
29.
X.-L.
Luo
and
R. I.
Tanner
, “
Finite element simulation of long and short circular die extrusion experiments using integral models
,”
Int. J. Numer. Methods Eng.
25
,
9
(
1988
).
30.
A.
Yoshimura
and
R. K.
Prud’homme
, “
Wall slip corrections for Couette and parallel disk viscometers
,”
J. Rheol.
32
,
53
(
1988
).
31.
M.
Ansari
,
E.
Mitsoulis
, and
S. G.
Hatzikiriakos
, “
Capillary extrusion and swell of a HDPE melt exhibiting slip
,”
Adv. Polym. Sci.
32
,
E369
(
2013
).
32.
E.
Chatzigiannakis
,
M.
Ebrahimi
,
M. H.
Wagner
, and
S. G.
Hatzikiriakos
, “
Wall slip of polyisobutylenes: Effect of molecular characteristics
,”
Rheol. Acta
56
,
85
(
2017
).
33.
M.
Mooney
, “
Explicit formulas for slip and fluidity
,”
J. Rheol.
2
,
210
(
1931
).
34.
S. Q.
Wang
and
P. A.
Drda
, “
Stick-slip transition in capillary flow of linear polyethylene: 3. Surface conditions
,”
Rheol. Acta
36
,
128
(
1997
).
35.
M.
Ebrahimi
,
V. K.
Konaganti
,
S.
Moradi
,
A. K.
Doufas
, and
S. G.
Hatzikiriakos
, “
Slip of polymer melts over micro/nano-patterned metallic surfaces
,”
Soft Matter
12
,
9759
(
2016
).
36.
M.
Ebrahimi
,
M.
Ansari
,
Y. W.
Inn
, and
S. G.
Hatzikiriakos
, “
Surface fractionation effects on slip of polydisperse polymer melts
,”
Phys. Fluids
28
,
93101
(
2016
).
37.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic
,
New York
,
1985
).
38.
S. H.
Anastasiadis
and
S. G.
Hatzikiriakos
, “
The work of adhesion of polymer/wall interfaces and its association with the onset of wall slip
,”
J. Rheol.
42
,
795
(
1998
).
39.
E.
Chatzigiannakis
,
M.
Ebrahimi
, and
S. G.
Hatzikiriakos
, “
On the molecular weight dependence of slip velocity of polymer melts
,”
J. Rheol.
61
,
731
(
2017
).
40.
J.
Dong
,
P.
Hyun
,
A. J.
Wagner
, and
J. D.
Park
, “
Structure-rheology relationship for a homogeneous colloidal gel under shear startup
,”
J. Rheol.
61
,
117
(
2017
).
You do not currently have access to this content.