The splash phenomenon is being increasingly explored with the use of modern measurement tools, including the high-speed cameras. Recording images at a rate of several thousand frames per second facilitates parameterization and description of the dynamics of splash phases. This paper describes the impact of a single drop of a liquid falling on the surface of the same liquid. Three single-phase liquid systems, i.e., water, petrol, and diesel fuel, were examined. The falling drops were characterized by different kinetic energy values depending on the height of the fall, which ranged from 0.1 to 7.0 m. Four forms, i.e., waves, crowns, semi-closed domes, and domes, were distinguished depending on the drop energy. The analysis of the recorded images facilitated determination of the static and dynamic parameters of each form, e.g., the maximum height of each splash form, the width of the splash form at its maximum height, and the rate of growth of the splash form. We, Re, Fr, and K numbers were determined for all analyzed liquid systems. On the basis of the obtained values of dimensionless numbers, the areas of occurrence of characteristic splash forms were separated.

1.
Ahn
,
S.
,
Doerr
,
S.
,
Douglas
,
P.
,
Bryant
,
R.
,
Hamlett
,
C.
,
McHale
,
G.
,
Newton
,
M. I.
, and
Shirtcliffe
,
N. J.
, “
Effects of hydrophobicity on splash erosion of model soil particles by single water drop impact
,”
Earth Surf. Processes Landforms
38
,
1225
1233
(
2013
).
2.
Aryafar
,
H.
and
Kavehpour
,
H. P.
, “
Drop coalescence through planar surfaces
,”
Phys. Fluids
18
,
072105-1
072105-6
(
2006
).
3.
Beczek
,
M.
,
Ryżak
,
M.
,
Sochan
,
A.
,
Mazur
,
R.
,
Polakowski
,
C.
, and
Bieganowski
,
A.
, “
The differences in crown formation during the splash on the thin water layers formed on the saturated soil surface and model surface
,”
PLoS One
12
,
e0181974
(
2017
).
4.
Castillo-Orozco
,
E.
,
Davanlou
,
A.
,
Choudhury
,
P. K.
, and
Kumar
,
R.
, “
On the impact of liquid drops on immiscible liquids
,” in
Proceeding of ASME 14th International Conference on Nanochannels, Microchannels, and Minichallels (ICNMM2016)
(
ASME
,
Washington, USA
,
2016
).
5.
Castrejón-Pita
,
R.
,
Munoz-Sanchez
,
B. N.
,
Hutchings
,
I. M.
, and
Castrejón-Pita
,
A. A.
, “
Droplet impact onto moving liquids
,”
J. Fluid Mech.
809
,
716
725
(
2016
).
6.
Cheng
,
M.
and
Lou
,
J.
, “
A numerical study on splash of oblique drop impact on wet walls
,”
Comput. Fluids
115
,
11
24
(
2015
).
7.
Coghe
,
A.
,
Brunello
,
G.
,
Cossali
,
G. E.
, and
Marengo
,
M.
, “
Single drop splash on thin film: Measurements of crown characteristics
,” in
Proceedings of the ILASS-Europe Conference
,
1999
.
8.
Cole
,
D.
,
The Splashing Morphology of Liquid-Liquid Impacts
, Ph.D thesis (
James Cook University
,
2007
).
9.
Cossali
,
G. E.
,
Coghe
,
A.
, and
Marengo
,
M.
, “
The impact of a single drop on a wetted solid surface
,”
Exp. Fluids
22
,
463
472
(
1997
).
10.
Cossali
,
G. E.
,
Mrengo
,
M.
,
Coghe
,
A.
, and
Zhdanov
,
S.
, “
The role of time in single drop splash on thin film
,”
Exp. Fluids
36
,
888
900
(
2004
).
11.
Darboux
,
F.
,
Davy
,
P.
,
Gascuel-Odoux
,
C.
, and
Huang
,
C.
, “
Evolution of soil surface roughness and flowpath connectivity in overland flow experiments
,”
CATENA
46
,
125
139
(
2001
).
12.
Deegan
,
R. D.
,
Brunet
,
P.
, and
Eggers
,
J.
, “
Complexities of splashing
,”
Nonlinearity
21
,
C1
(
2008
).
13.
Fernández-Raga
,
M.
,
Fraile
,
R.
,
Keizer
,
J. J.
,
Varela-Teijeiro
,
M. E.
,
Castro
,
A.
,
Palencia
,
C.
,
Calvo
,
A. I.
,
Koenders
,
J.
, and
Marques
,
R. L.
, “
The kinetic energy of rain measured with an optical disdrometer: An application on splash erosion
,”
Atmos. Res.
96
,
225
240
(
2009
).
14.
Fernández-Raga
,
M.
,
Palencia
,
C.
,
Keesstra
,
S.
,
Jordan
,
A.
,
Fraile
,
R.
,
Angulo-Martínez
,
M.
, and
Cerdà
,
A.
, “
Splash erosion: A review with unanswered questions
,”
Earth-Sci. Rev.
171
,
463
477
(
2017
).
15.
Furbish
,
D. J.
,
Hamner
,
K. K.
,
Schmeeckle
,
M.
,
Borosund
,
M. N.
, and
Mudd
,
S. M.
, “
Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets
,”
J. Geophys. Res.
112
,
F01001
(
2007
).
16.
Ghadiri
,
H.
, “
Crater formation in soils by raindrop impact
,”
Earth Surf. Processes Landforms
29
,
77
89
(
2004
).
17.
Gopala
,
V. R.
and
Van Wachem
,
B. G. M.
, “
Volume of fluid methods for immiscible-fluid and free-surface flows
,”
Chem. Eng. J.
141
,
204
221
(
2008
).
18.
Josserand
,
C.
and
Thoroddsen
,
S.
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
19.
Korbiel
,
T.
,
Ryżak
,
M.
,
Przech
,
D.
,
Lamorski
,
K.
, and
Bieganowski
,
A.
, “
A system for recording the dynamics of the water drop’s impact on a surface
,”
Meas. Control
48
,
149
156
(
2015
).
20.
Krechetnikov
,
R.
and
Homsy
,
G. M.
, “
Crown-forming instability in the drop splash problem
,”
J. Colloid Interface Sci.
331
,
555
559
(
2009
).
21.
Kubota
,
Y.
and
Mochizuki
,
O.
, “
Influence of head shape of solid body plunging into water on splash formation
,”
J. Visualization
14
,
111
119
(
2011
).
22.
Lan
,
M.
,
Wang
,
X.
,
Chen
,
P.
, and
Zhao
,
X.
, “
Effects of surface tension and wood surface roughness on impact splash of a pure and multi-component water drop
,”
Case Stud. Therm. Eng.
8
,
218
225
(
2016
).
23.
Lee
,
S. H.
,
Hur
,
N.
, and
Kang
,
S.
, “
A numerical analysis of drop impact on liquid film by using a level set method
,”
J. Mech. Sci. Technol.
25
,
2567
2572
(
2011
).
24.
Liang
,
G.
,
Guo
,
Y.
,
Shen
,
S.
, and
Yang
,
Y.
, “
Crown behavior and bubble entrainment during a drop impact on a liquid film
,”
Theor. Comput. Fluid Dyn.
28
,
159
170
(
2014
).
25.
Liu
,
J.
,
Vu
,
H.
,
Yoon
,
S. S.
,
Jepsen
,
R.
, and
Aguilar
,
G.
, “
Splashing phenomena during liquid droplet impact
,”
Atomization Sprays
20
,
297
310
(
2010
).
26.
Liu
,
Y.
,
Tan
,
P.
, and
Xu
,
L.
, “
Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
3280
3284
(
2015
).
27.
Long
,
E. J.
,
Hargrave
,
G. K.
,
Cooper
,
J. R.
,
Kitchener
,
B. G. B.
,
Parsons
,
A. J.
,
Hewett
,
C. J. M.
, and
Wainwright
,
J.
, “
Experimental investigation into the impact of a liquid droplet onto a granular bed using three-dimensional, time-resolved, particle tracking
,”
Phys. Rev. E
89
,
032201
(
2014
).
28.
Mandre
,
S.
,
Mani
,
M.
, and
Brenner
,
M. P.
, “
Precursors to splashing of liquid droplets on a solid surface
,”
Phys. Rev. Lett.
102
,
134502
(
2009
).
29.
Manzello
,
S. L.
and
Yang
,
J. C.
, “
The influence of liquid pool temperature on the critical impact Weber number for splashing
,”
Phys. Fluids
15
,
257
260
(
2003
).
30.
Marengo
,
M.
,
Antonini
,
C.
,
Roisman
,
I. V.
, and
Tropea
,
C.
, “
Drop collisions with simple and complex surfaces
,”
Curr. Opin. Colloid Interface Sci.
16
,
292
302
(
2011
).
31.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
, “
Droplet-wall collisions: Experimental studies of the deformation and breakup process
,”
Int. J. Multiphase Flow
2
,
151
173
(
1995
).
32.
Murphy
,
D.
,
Li
,
C.
,
D’albignac
,
V.
,
Morra
,
D.
, and
Katz
,
J.
, “
Splash behaviour and oily marine aerosol production by raindrops impacting oil slicks
,”
J. Fluid Mech.
780
,
536
577
(
2015
).
33.
Okawa
,
T.
,
Shiraishi
,
T.
, and
Mori
,
T.
, “
Production of secondary drops during the single water drop impact onto a plane water surface
,”
Exp. Fluids
41
,
965
974
(
2006
).
34.
Pan
,
K. L.
and
Hung
,
C. Y.
, “
Droplet impact upon a wet surface with varied fluid and surface properties
,”
J. Colloid Interface Sci.
352
,
186
193
(
2010
).
35.
Peters
,
I. R.
,
Madonia
,
M.
,
Lohse
,
D.
, and
Van Der Meer
,
D.
, “
Volume entrained in the wake of a disc intruding into an oil-water interface
,”
Phys. Rev. Fluids
1
,
033901
(
2016
).
36.
Range
,
K.
and
Feuillebois
,
F.
, “
Influence of surface roughness on liquid drop impact
,”
J. Colloid Interface Sci.
203
,
16
30
(
1998
).
37.
Riboux
,
G.
and
Gordillo
,
J. M.
, “
Experiments of drops impacting a smooth solid surface: A model of the critical impact speed for drop splashing
,”
Phys. Rev. Lett.
113
,
024507
(
2014
).
38.
Rieber
,
M.
and
Frohn
,
A.
, “
A numerical study on the mechanism of splashing
,”
Int. J. Heat Fluid Flow
20
,
455
461
(
1999
).
39.
Rioboo
,
R.
,
Marengo
,
M.
, and
Tropea
,
C.
, “
Outcomes from a drop impact on solid surfaces
,”
Atomization Sprays
11
,
155
165
(
2001
).
40.
Rioboo
,
R.
,
Bauthier
,
C.
,
Conti
,
J.
,
Voue
,
M.
, and
De Coninck
,
J.
, “
Experimental investigation of splash and crown formation during single drop impact on wetted surfaces
,”
Exp. Fluids
35
,
648
52
(
2003
).
41.
Rodriguez
,
F.
and
Mesler
,
R.
, “
Some drops don’t splash
,”
J. Colloid Interface Sci.
106
,
347
352
(
1985
).
42.
Ryżak
,
M.
and
Bieganowski
,
A.
, “
Using the image analysis method for describing soil detachment by a single water drop impact
,”
Sensors
12
,
11527
11543
(
2012
).
43.
Ryżak
,
M.
,
Bieganowski
,
A.
, and
Polakowski
,
C.
, “
Effect of soil moisture content on the splash phenomenon reproducibility
,”
PLoS One
10
,
e0119269
(
2015
).
44.
Ryżak
,
M.
,
Bieganowski
,
A.
, and
Korbiel
,
T.
, “
Sound wave energy resulting from the impact of water drops on the soil surface
,”
PLoS One
11
,
e0158472
(
2016
).
45.
Saint-Jean
,
S.
,
Chelle
,
M.
, and
Huber
,
L.
, “
Modelling water transfer by rain-splash in a 3D canopy using Monte Carlo integration
,”
Agric. For. Meteorol.
121
,
183
196
(
2004
).
46.
Scholten
,
T.
,
Geißler
,
C.
,
Goc
,
J.
,
Kühn
,
P.
, and
Wiegand
,
C.
, “
A new splash cup to measure the kinetic energy of rainfall
,”
J. Plant Nutr. Soil Sci.
174
,
596
601
(
2011
).
47.
Sikalo
,
S.
and
Ganic
,
E. N.
, “
Phenomena of droplet–surface interactions
,”
Exp. Therm. Fluid Sci.
31
,
97
110
(
2006
).
48.
Sikalo
,
S.
,
Marengo
,
M.
,
Tropea
,
C.
, and
Ganic
,
E. N.
, “
Analysis of impact of droplets on horizontal surfaces
,”
Exp. Therm. Fluid Sci.
25
,
503
510
(
2002
).
49.
Soloviev
,
A. V.
,
Haus
,
B. K.
,
Mcgauley
,
M. G.
,
Dean
,
C. W.
,
Ortiz-Suslow
,
D. G.
,
Laxague
,
N. J.
, and
Ozgokmen
,
T. M.
, “
Surface dynamics of crude and weathered oil in the presence of dispersants: Laboratory experiment and numerical simulation
,”
J. Geophys. Res.: Oceans
121
,
3502
3516
(
2016
).
50.
Tajiri
,
S.
,
Tsutahara
,
M.
, and
Tanaka
,
H.
, “
Simulation of sound emitted from collision of droplet with shallow water by the lattice Boltzmann method
,” in
Computational Science–ICCS 2008
, Lecture Notes in Computer Science Vol. 5102, edited by
M.
Bubak
,
G. D. J.
van Albada Dongarra
, and
P. M. A.
Sloot
(
Springer
,
2008
), pp.
271
280
.
51.
Thoraval
,
M.
,
Li
,
Y.
, and
Thoroddsen
,
S.
, “
Vortex-ring-induced large bubble entrainment during drop impact
,”
Phys. Rev. E
93
,
033128
(
2016
).
52.
Vander Wal
,
R. L.
,
Berger
,
G. M.
, and
Mozes
,
S. D.
, “
The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them
,”
Exp. Fluids
40
,
23
32
(
2006a
).
53.
Vander Wal
,
R. L.
,
Berger
,
G. M.
, and
Mozes
,
S. D.
, “
Droplets splashing upon films of the same fluid of various depths
,”
Exp. Fluids
40
,
33
52
(
2006b
).
54.
Wang
,
A. B.
and
Chen
,
C. C.
, “
Splashing impact of a single drop onto very thin liquid films
,”
Phys. Fluids
12
,
2155
2158
(
2000
).
55.
Wang
,
Y.
,
Shu
,
C.
, and
Yang
,
L. M.
, “
An improved multiphase lattice Boltzmann flux solver for three-dimensional flows with large density ratio and high Reynolds number
,”
J. Comput. Phys.
302
,
41
58
(
2015
).
56.
Xu
,
L.
,
Zhang
,
W. W.
, and
Nagel
,
S. R.
, “
Drop splashing on a dry smooth surface
,”
Phys. Rev. Lett.
94
,
184505
(
2005
).
57.
Yakhshi-Tafti
,
E.
,
Cho
,
H. J.
, and
Kumar
,
R.
, “
Impact of drops on the surface of immiscible liquids
,”
J. Colloid Interface Sci.
350
,
373
376
(
2010
).
58.
Yang
,
X.
,
Wilson
,
L. L.
,
Madden
,
L. V.
, and
Ellis
,
M. A.
, “
Rain splash dispersal of Colletotrichum acutatum from infected strawberry fruit
,”
Phytopathology
80
,
590
595
(
1990
).
59.
Yarin
,
A. L.
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
92
(
2006
).
60.
Yarin
,
A. L.
and
Weiss
,
D. A.
, “
Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity
,”
J. Fluid Mech.
283
,
141
173
(
1995
).
61.
Yokoi
,
K. A.
, “
A practical numerical framework for free surface flows based on CLSVOF method, multi-moment methods and density-scaled CSF model: Numerical simulations of droplet splashing
,”
J. Comput. Phys.
232
,
252
271
(
2013
).
62.
Zhang
,
L. V.
,
Burnet
,
P.
,
Eggers
,
J.
, and
Deegan
,
R. D.
, “
Wavelength selection in the crown splash
,”
Phys. Fluids
22
,
122105-1
122105-9
(
2010
).
63.
Zhou
,
G.
,
Wei
,
X.
, and
Yan
,
J.
, “
Impacts of eucalyptus (Eucalyptus exserta) plantation on sediment yield in Guangdong Province, Southern China—A kinetic energy approach
,”
Catena
49
,
231
251
(
2002
).
You do not currently have access to this content.