Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the “freezing fraction” is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different “packing densities” of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

1.
B. L.
Messinger
,
“Equilibrium temperature of an unheated icing surface as a function of air speed
,”
J. Aeronaut. Sci.
20
,
29
42
(
1953
).
2.
G. I.
Poots
,
Ice and Snow Accretion on Structures
(
Research Studies Press
,
1996
).
3.
Y.
Bourgault
,
H.
Beaugendre
, and
W. G.
Habashi
, “
Development of a shallow-water icing model in fensap-ice
,”
J. Aircr.
37
(
4
),
640
646
(
2000
).
4.
T. W.
Brakel
,
J. P. F.
Charpin
, and
T. G.
Myers
, “
One-dimensional ice growth due to incoming supercooled droplets impacting on a thin conducting substrate
,”
Int. J. Heat Mass Transfer
50
,
1694
1705
(
2007
).
5.
Y.
Cao
,
C.
Ma
,
Q.
Zhang
, and
J.
Sheridan
, “
Numerical simulation of ice accretions on an aircraft wing
,”
Aerosp. Sci. Technol.
23
,
296
304
(
2012
).
6.
M.
Rios
, “
Icing simulations using Jones’ density formula for accreted ice and Lewice
,” in
Proceedings of the 29th Aerospace Sciences Meeting
,
Reno, Nevada, USA
,
1991
.
7.
T.
Myers
,
C.
Thompson
, and
V. K. S. S.
Bandakhavai
, “
Modelling water flow on aircraft in icing conditions. Part 1: Theory and results
,” in
Proceedings of the 15th IMACS World Congress on Scientific Computation Modelling and Applied Mathematics
(
Wissenschaft and Technik
,
Germany
,
1997
).
8.
T. G.
Myers
and
P.
Thompson
, “
Modelling the flow of water on aircraft in icing conditions
,”
AIAA J.
36
(
6
),
1010
1013
(
1998
).
9.
T. G.
Myers
and
D. W.
Hammond
, “
Ice and water film growth from incoming supercooled droplets
,”
Int. J. Heat Mass Transfer
42
,
2233
2242
(
1999
).
10.
T. G.
Myers
, “
Extension to the Messinger model for aircraft icing
,”
AIAA J.
39
(
2
),
211
218
(
2001
).
11.
T. G.
Myers
,
J. P. F.
Charpin
, and
C. P.
Thompson
, “
Slowly accreting ice due to supercooled water impacting on a cold surface
,”
Phys. Fluids
14
(
1
),
240
256
(
2002
).
12.
P.
Verdin
,
An Automatic Multi-Stepping Approach for Aircraft Ice Prediction
, Ph.D. thesis,
Cranfield University
,
2007
.
13.
J.
Stefan
, “
Über die theorie der eisbildung insbesondere über die eisbildung im polarmeere
,”
Sitzungsber. Kais. Akad. Wiss. Math.-Naturwiss. Cl. II Abtheilung
98
,
965
983
(
1889
).
14.
X.
Zhang
,
X.
Wu
, and
J.
Min
, “
Aircraft icing model considering both rime ice property variability and runback water effect
,”
Int. J. Heat Mass Transfer
104
,
510
516
(
2017
).
15.
L.
Xin
,
B.
Junqiang
,
H.
Jun
,
W.
Kun
, and
Z.
Yang
, “
A spongy icing model for aircraft icing
,”
Chin. J. Aeronaut.
27
(
1
),
40
51
(
2014
).
16.
M. G.
Worster
, “
Convection in mushy layers
,”
Annu. Rev. Fluid Mech.
29
,
91
122
(
1997
).
17.
D. N.
Anderson
and
A.
Feo
, “
Ice-accretion scaling using water-film thickness parameters
,” in
Proceedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit
(
American Institute of Aeronautics and Astronautics
,
Reno, Nevada, USA
,
2002
).
18.
E. R.
Williams
and
R.
Zhang
, “
Density of rime in laboratory simulations of thunderstorm microphysics and electrification
,”
J. Geophys. Res.: Atmos.
101
(
D23
),
29715
29719
, https://doi.org/10.1029/96jd03216 (
1996
).
19.
Y.
Yi Dong
and
J.
Hallett
, “
Droplet accretion during rime growth and the formation of secondary ice crystals
,”
Q. J. R. Metereol. Soc.
115
(
485
),
127
142
(
1989
).
20.
T. G.
Myers
and
J. P. F.
Charpin
, “
A mathematical model for atmospheric ice accretion and water flow on a cold surface
,”
Int. J. Heat Mass Transfer
47
,
5483
5500
(
2004
).
21.
L.
Battisti
,
Wind Turbines in Cold Climates–Icing Impacts and Mitigation Systems
(
Springer International Publishing
,
New Delhi, India
,
2015
).
22.
F. T.
Lynch
and
A.
Khodadoust
, “
Effect of ice accretions on aircraft aerodynamics
,”
Prog. Aerosp. Sci.
37
,
669
767
(
2001
).
23.
M.
Mirzaei
,
M. A.
Ardekani
, and
M.
Doosttalab
, “
Numerical and experimental study of flow field characteristics of an iced aerofoil
,”
Aerosp. Sci. Technol.
13
,
267
276
(
2009
).
24.
M. K.
Politovich
,
Aircraft Icing
, Encyclopedia of Atmospheric Sciences (
Elsevier Science Ltd.
,
2003
), pp.
68
75
.
25.
M. G.
Worster
,
Perspectives in Fluid Dynamics: A Collective Introduction to Current Research
, Solidification of Fluids, edited by
G. K.
Batchelor
,
H. K.
Moffatt
, and
M. G.
Worster
(
Cambridge University Press
,
2000
), pp.
393
446
.
26.
W. O.
Valarezo
, “
Aerodynamic performance effects due to small leading edge ice (roughness) on wings and tails
,”
J. Aircr.
30
(
6
),
807
812
(
1993
).
27.
S.
Binzaid
,
S. A.
Al-Tomal
,
D.
Zaid
, and
M. H.
Rosen
, “
Deicing technology for modern military and commercial aircraft wing surfaces
,” in
Electrical and Electronic Engineering Proceedings of the Conference on Engineering Research, Innovation and Education CERIE 2011
,
Sylhet, Bangladesh
,
11–13 January 2011
.
28.
H.
Gao
and
J. L.
Rose
, “
Ice detection and classification on an aircraft wing with ultrasonic shear horizontal guided waves
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
56
(
2
),
334
344
(
2009
).
29.
J. L.
Palacios
,
E. W.
Brouwers
,
Y.
Han
, and
E. C.
Smith
, “
Adverse environment rotor test stand calibration procedures and ice shape correlation
,” in
Proceedings of the American Helicopter Society 66th Annual Forum
,
Phoenix, AZ
,
11–13 May 2010
.
30.
G.
Ruff
,
Analysis and Verification of the Icing Scaling Equations
, Air Force Technical Report AEDC-TR-85-30,
November 1985
.
You do not currently have access to this content.