We study the longwave Marangoni convection in two-layer films under the influence of a low frequency vibration. A linear stability analysis is performed by means of the Floquet theory. A competition of subharmonic, synchronous, and quasiperiodic modes is considered. It has been found that the monotonic instability, which exists at constant gravity, is transformed into a synchronous instability, which is critical in a wide range of vibration amplitude. At parameters where oscillatory instability exists, the longwave quasiperiodic mode remains critical until a subharmonic mode becomes critical with the growth of the vibration amplitude.

1.
M.
Faraday
, “
On a peculiar class of acoustic figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces
,”
Philos. Trans. R. Soc. London
121
,
299
(
1831
).
2.
D. V.
Lyubimov
,
T. P.
Lyubimova
, and
A. A.
Cherepanov
,
Dynamics of Interfaces in Vibration Fields
(
Fizmatlit
,
Moscow
,
2004
) (in Russian).
3.
F. J.
Mancebo
and
J. M.
Vega
, “
Faraday instability threshold in large-aspect-ratio containers
,”
J. Fluid Mech.
467
,
307
(
2002
).
4.
G. Z.
Gershuni
and
D. V.
Lyubimov
,
Thermal Vibrational Convection
(
Wiley
,
New York
,
1998
).
5.
P. M.
Gresho
and
R. L.
Sani
, “
The effect of gravity modulation on the stability of a heated fluid layer
,”
J. Fluid Mech.
40
,
783
(
1970
).
6.
G. Z.
Gershuni
,
E. M.
Zhukhovitskii
, and
I. S.
Iurkov
, “
On the convective stability in the presence of periodically varying parameter
,”
J. Appl. Math. Mech.
34
,
442
(
1970
).
7.
G.
Venezian
, “
Effect of modulation on the onset of thermal convection
,”
J. Fluid Mech.
35
,
243
(
1969
).
8.
J. R.
Rogers
,
W.
Pesch
,
O.
Brausch
, and
M. F.
Schatz
, “
Complex-ordered patterns in shaken convection
,”
Phys. Rev. E
71
,
066214
(
2005
).
9.
Y.
Shu
,
B. Q.
Li
, and
B. R.
Ramaprian
, “
Convection in modulated thermal gradients and gravity: Experimental measurements and numerical simulations
,”
Int. J. Heat Mass Transfer
48
,
145
(
2005
).
10.
B. L.
Smorodin
,
G. Z.
Gershuni
, and
M. G.
Velarde
, “
On the parametric excitation of thermoelectric instability in a liquid layer open to air
,”
Int. J. Heat and Mass Transfer
42
,
3159
(
1999
).
11.
R. V.
Birikh
,
V. A.
Briskman
,
A. A.
Cherepanov
, and
M. G.
Velarde
, “
Faraday ripples, parametric resonance, and the Marangoni effect
,”
J. Colloid Interface Sci.
238
,
16
(
2001
).
12.
J. R. L.
Skarda
, “
Instability of a gravity-modulated fluid layer with surface tension variation
,”
J. Fluid Mech.
434
,
243
(
2001
).
13.
B. L.
Smorodin
,
A. B.
Mikishev
,
A. A.
Nepomnyashchy
, and
B. I.
Myznikova
, “
Thermocapillary instability of a liquid layer under heat flux modulation
,”
Phys. Fluids
21
,
062102
(
2009
).
14.
V. I.
Yudovich
,
S. M.
Zenkovskaya
,
V. A.
Novossiadliy
, and
A. L.
Shleykel
, “
Parametric excitation of waves on a free boundary of a horizontal fluid layer
,”
C. R. Mec.
332
,
257
(
2004
).
15.
S. M.
Zenkovskaya
,
V. A.
Novosyadlyi
, and
A. L.
Shleikel
, “
The effect of vertical vibration on the onset of thermocapillary convection in a horizontal liquid layer
,”
J. Appl. Math. Mech.
71
,
247
(
2007
).
16.
U.
Thiele
,
J. M.
Vega
, and
E.
Knobloch
, “
Long-wave Marangoni instability with vibration
,”
J. Fluid Mech.
546
,
61
(
2006
).
17.
P.
Colinet
,
J.-C.
Legros
, and
M. G.
Velarde
,
Nonlinear Dynamics of Surface-Tension-Driven Instabilities
(
Wiley-VCH
,
Berlin
,
2001
).
18.
A. A.
Nepomnyashchy
,
M. G.
Velarde
, and
P.
Colinet
,
Interfacial Phenomena and Convection
(
Chapman and Hall/CRC Press
,
London
,
2001
).
19.
R. V.
Birikh
,
V. A.
Briskman
,
M. G.
Velarde
, and
J.-C.
Legros
,
Liquid Interfacial Systems. Oscillations and Instability
(
Marcel Dekker
,
New York, Basel
,
2003
).
20.
S. M.
Zenkovskaya
and
V. A.
Novosyadlyi
, “
Averaging method and long-wave asymptotics in vibrational convection in layers with an interface
,”
J. Eng. Math.
69
,
277
(
2010
).
21.
A. A.
Nepomnyashchy
and
I. B.
Simanovskii
, “
Marangoni instability in ultrathin two layer films
,”
Phys. Fluids
19
,
122103
(
2007
).
22.
A. A.
Nepomnyashchy
and
I. B.
Simanovskii
, “
Nonlinear Marangoni waves in a two-layer film in the presence of gravity
,”
Phys. Fluids
24
,
032101
(
2012
).
23.
A. A.
Nepomnyashchy
and
I. B.
Simanovskii
, “
The influence of vibration on Marangoni waves in two-layer films
,”
J. Fluid Mech.
726
,
476
496
(
2013
).
24.
J. W.
Scanlon
and
L. A.
Segel
, “
Finite amplitude cellular convection induced by surface tension
,”
J. Fluid Mech.
30
(
1
),
149
(
1967
).
25.
S. J.
Van Hook
,
M. F.
Schatz
,
J. B.
Swift
,
W. D.
McCormic
, and
H. L.
Swinney
, “
Long-wavelength surface-tension-driven Bénard convection: Experiment and theory
,”
J. Fluid Mech.
345
,
45
(
1997
).
26.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
27.
S. H.
Davis
, “
Thermocapillary instabilities
,”
Annu. Rev. Fluid Mech.
19
,
403
(
1987
).
28.
I.
Nehati
,
M.
Dietzel
, and
S.
Hardt
, “
Conjugated liquid layers driven by the short-wavelength Bénard-Marangoni instability: Experiment and numerical simulation
,”
J. Fluid Mech.
783
,
46
(
2015
).
29.
Ph.
Géoris
,
M.
Hennenberg
,
G.
Lebon
, and
J. C.
Legros
, “
Investigation of thermocapillary convection in a three-liquid-layer system
,”
J. Fluid Mech.
389
,
209
(
1999
).
30.
A.
Prakash
and
J. N.
Koster
, “
Convection in multiple layers of immiscible liquids in a shallow cavity I. Steady natural convection
,”
Int. J. Multiphase Flow
20
,
383
(
1994
).
31.
C. A.
Burkersroda
,
A.
Prakash
, and
J. N.
Koster
, “
Interfacial tension between fluorinert liquids and silicone oil
,”
Microgravity Q.
4
,
93
(
1994
).
32.
M. M.
Degen
,
P. W.
Colovas
, and
C. D.
Andereck
, “
Time-dependent patterns in the two-layer Rayleigh-Bénard systems
,”
Phys. Rev. E
57
,
6647
(
1998
).
33.
B.
Zhou
,
Q.
Liu
, and
Z.
Tang
, “
Rayleigh-Marangoni-Bénard instability in two-layer fluid system
,”
Acta Mech. Sin.
20
,
366
(
2004
).
34.
A. H.
Nayfeh
,
Perturbation Methods
(
Wiley
,
New York
,
1973
).
35.
B. L.
Smorodin
and
M. G.
Velarde
, “
Electrothermoconvective instability of an ohmic liquid layer in an unsteady electric field
,”
J. Electrost.
48
(
3-4
),
261
277
(
2000
).
36.
B. L.
Smorodin
,
B. I.
Myznikova
, and
J. C.
Legros
, “
Evolution of convective patterns in a binary-mixture layer subjected to a periodical change of the gravity field
,”
Phys. Fluids
20
,
094102
(
2008
).
You do not currently have access to this content.