Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs’ network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs’ network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.

1.
A.
Shayesteh Zeraati
,
S. A.
Mirkhani
, and
U.
Sundararaj
, “
Enhanced dielectric performance of polymer nanocomposites based on CNT/MnO2 nanowire hybrid nanostructure
,”
J. Phys. Chem. C
121
,
8327
(
2017
).
2.
Z.-M.
Dang
,
S.-H.
Yao
,
J.-K.
Yuan
, and
J.
Bai
, “
Tailored dielectric properties based on microstructure change in BaTiO3-carbon nanotube/polyvinylidene fluoride three-phase nanocomposites
,”
J. Phys. Chem. C
114
,
13204
(
2010
).
3.
Y. Y.
Huang
and
E. M.
Terentjev
, “
Tailoring the electrical properties of carbon nanotube–polymer composites
,”
Adv. Funct. Mater.
20
,
4062
(
2010
).
4.
L.-L.
Wang
,
B.-K.
Tay
,
K.-Y.
See
,
Z.
Sun
,
L.-K.
Tan
, and
D.
Lua
, “
Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing
,”
Carbon
47
,
1905
(
2009
).
5.
N.
Li
,
Y.
Huang
,
F.
Du
,
X.
He
,
X.
Lin
,
H.
Gao
,
Y.
Ma
,
F.
Li
,
Y.
Chen
, and
P. C.
Eklund
, “
Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites
,”
Nano Lett.
6
,
1141
(
2006
).
6.
P.-C.
Ma
,
N. A.
Siddiqui
,
G.
Marom
, and
J.-K.
Kim
, “
Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review
,”
Composites, Part A
41
,
1345
(
2010
).
7.
S. H.
Park
and
P. R.
Bandaru
, “
Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages
,”
Polymer
51
,
5071
(
2010
).
8.
Q.
Guo
,
Q.
Xue
,
J.
Sun
,
M.
Dong
,
F.
Xia
, and
Z.
Zhang
, “
Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids
,”
Nanoscale
7
,
3660
(
2015
).
9.
H.
Liu
,
Y.
Shen
,
Y.
Song
,
C. W.
Nan
,
Y.
Lin
, and
X.
Yang
, “
Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density
,”
Adv. Mater.
23
,
5104
(
2011
).
10.
L.
Liu
and
J. C.
Grunlan
, “
Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites
,”
Adv. Funct. Mater.
17
,
2343
(
2007
).
11.
K.
Hayashida
and
Y.
Matsuoka
, “
Highly enhanced dielectric constants of barium titanate-filled polymer composites using polymer-grafted carbon nanotube matrix
,”
Carbon
60
,
506
(
2013
).
12.
P.-C.
Lin
,
S.
Lin
,
P. C.
Wang
, and
R.
Sridhar
, “
Techniques for physicochemical characterization of nanomaterials
,”
Biotechnol. Adv.
32
,
711
(
2014
).
13.
D.
Kim
,
J. S.
Lee
,
C. M.
Barry
, and
J. L.
Mead
, “
Microscopic measurement of the degree of mixing for nanoparticles in polymer nanocomposites by TEM images
,”
Microsc. Res. Tech.
70
,
539
(
2007
).
14.
W.
Lertwimolnun
and
B.
Vergnes
, “
Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix
,”
Polymer
46
,
3462
(
2005
).
15.
H. A.
Barnes
, “
A review of the rheology of filled viscoelastic systems
,” in
Rheology Reviews 2003
(British Society of Rheology, 2003), pp.
1
36
.
16.
S.
Thomas
,
R.
Muller
, and
J.
Abraham
,
Rheology and Processing of Polymer Nanocomposites
(
John Wiley & Sons
,
2016
).
17.
I.
Sahebi Jouibari
,
M.
Kamkar
, and
H.
Nazokdast
, “
Nanoparticle effects of thermoplastic polyurethane on kinetics of microphase separation, with or without preshear
,”
Polym. Compos.
(published online).
18.
F.
Khalkhal
and
P. J.
Carreau
, “
Scaling behavior of the elastic properties of non-dilute MWCNT–epoxy suspensions
,”
Rheol. Acta
50
,
717
(
2011
).
19.
S.
Sadeghi
,
M.
Arjmand
,
I.
Otero Navas
,
A.
Zehtab Yazdi
, and
U.
Sundararaj
, “
Effect of nanofiller geometry on network formation in polymeric nanocomposites: Comparison of rheological and electrical properties of multiwalled carbon nanotube and graphene nanoribbon
,”
Macromolecules
50
,
3954
(
2017
).
20.
R.
Krishnamoorti
and
E. P.
Giannelis
, “
Rheology of end-tethered polymer layered silicate nanocomposites
,”
Macromolecules
30
,
4097
(
1997
).
21.
C.-C.
Lin
,
S.
Gam
,
J. S.
Meth
,
N.
Clarke
,
K. I.
Winey
, and
R. J.
Composto
, “
Do attractive polymer–nanoparticle interactions retard polymer diffusion in nanocomposites?
,”
Macromolecules
46
,
4502
(
2013
).
22.
D.
Wu
,
L.
Wu
, and
M.
Zhang
, “
Rheology of multi-walled carbon nanotube/poly (butylene terephthalate) composites
,”
J. Polym. Sci., Part B: Polym. Phys.
45
,
2239
(
2007
).
23.
M.
Wilhelm
, “
Fourier-transform rheology
,”
Macromol. Mater. Eng.
287
,
83
(
2002
).
24.
K.
Hyun
and
W.
Kim
, “
A new non-linear parameter Q from FT-rheology under nonlinear dynamic oscillatory shear for polymer melts system
,”
Korea-Aust. Rheol. J.
23
,
227
(
2011
).
25.
A.
Shayesteh Zeraati
,
M.
Arjmand
, and
U.
Sundararaj
, “
Silver nanowire/MnO2 nanowire hybrid polymer nanocomposites: Materials with high dielectric permittivity and low dielectric loss
,”
ACS Appl. Mater. Interfaces
9
,
14328
(
2017
).
26.
S.
Devaraj
and
N.
Munichandraiah
, “
Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties
,”
J. Phys. Chem. C
112
,
4406
(
2008
).
27.
T.
Chatterjee
and
R.
Krishnamoorti
, “
Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide)
,”
Macromolecules
41
,
5333
(
2008
).
28.
J.
Mewis
and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147
,
214
(
2009
).
29.
M. J.
Solomon
,
A. S.
Almusallam
,
K. F.
Seefeldt
,
A.
Somwangthanaroj
, and
P.
Varadan
, “
Rheology of polypropylene/clay hybrid materials
,”
Macromolecules
34
,
1864
(
2001
).
30.
T.
Domenech
,
R.
Zouari
,
B.
Vergnes
, and
E.
Peuvrel-Disdier
, “
Formation of fractal-like structure in organoclay-based polypropylene nanocomposites
,”
Macromolecules
47
,
3417
(
2014
).
31.
A. I.
Leonov
, “
On the rheology of filled polymers
,”
J. Rheol.
34
,
1039
(
1990
).
32.
A.
Mohraz
and
M. J.
Solomon
, “
Orientation and rupture of fractal colloidal gels during start-up of steady shear flow
,”
J. Rheol.
49
,
657
(
2005
).
33.
M.
Arjmand
,
S.
Sadeghi
,
M.
Khajehpour
, and
U.
Sundararaj
, “
Carbon nanotube/graphene nanoribbon/polyvinylidene fluoride hybrid nanocomposites: Rheological and dielectric properties
,”
J. Phys. Chem. C
121
,
169
(
2016
).
34.
R.
Krishnamoorti
and
K.
Yurekli
, “
Rheology of polymer layered silicate nanocomposites
,”
Curr. Opin. Colloid Interface Sci.
6
,
464
(
2001
).
35.
V.
Gupta
,
R.
Krishnamoorti
,
Z.
Chen
,
J.
Kornfield
,
S.
Smith
,
M.
Satkowski
, and
J.
Grothaus
, “
Dynamics of shear alignment in a lamellar diblock copolymer: Interplay of frequency, strain amplitude, and temperature
,”
Macromolecules
29
,
875
(
1996
).
36.
S.
Patel
,
R.
Larson
,
K.
Winey
, and
H.
Watanabe
, “
Shear orientation and rheology of a lamellar polystyrene-polyisoprene block copolymer
,”
Macromolecules
28
,
4313
(
1995
).
37.
B. I.
Yakobson
,
C.
Brabec
, and
J.
Bernholc
, “
Nanomechanics of carbon tubes: Instabilities beyond linear response
,”
Phys. Rev. Lett.
76
,
2511
(
1996
).
38.
C. F.
Schmid
,
L. H.
Switzer
, and
D. J.
Klingenberg
, “
Simulations of fiber flocculation: Effects of fiber properties and interfiber friction
,”
J. Rheol.
44
,
781
(
2000
).
39.
S.
Lin-Gibson
,
J.
Pathak
,
E.
Grulke
,
H.
Wang
, and
E.
Hobbie
, “
Elastic flow instability in nanotube suspensions
,”
Phys. Rev. Lett.
92
,
048302
(
2004
).
40.
M. A.
Osman
and
A.
Atallah
, “
Interparticle and particle–matrix interactions in polyethylene reinforcement and viscoelasticity
,”
Polymer
46
,
9476
(
2005
).
41.
N.
Hasanabadi
,
H.
Nazockdast
,
S.
Balog
, and
M.
Lattuada
, “
Rheological characterization of nanostructured material based on polystyrene-b-poly(ethylene-butylene)-b-polystyrene (SEBS) block copolymer: Effect of block copolymer composition and nanoparticle geometry
,”
Compos. Sci. Technol.
149
,
192
(
2017
).
42.
B.
Ranjbar
and
H.
Nazockdast
, “
Shear flow-induced orientation and structural recovery of multiwalled carbon nanotube in poly(ethylene oxide) matrix
,”
J. Appl. Polym. Sci.
132
,
41753
(
2015
).
43.
M. I.
Aranguren
,
E.
Mora
,
J. V.
DeGroot
, Jr.
, and
C. W.
Macosko
, “
Effect of reinforcing fillers on the rheology of polymer melts
,”
J. Rheol.
36
,
1165
(
1992
).
44.
P.
Cassagnau
, “
Melt rheology of organoclay and fumed silica nanocomposites
,”
Polymer
49
,
2183
(
2008
).
45.
G.
Heinrich
and
M.
Klüppel
,
Filled Elastomers Drug Delivery Systems
(
Springer
,
2002
), p.
1
.
46.
A. S.
Sarvestani
and
E.
Jabbari
, “
Modeling the viscoelastic response of suspension of particles in polymer solution: The effect of polymer-particle interactions
,”
Macromol. Theory Simul.
16
,
378
(
2007
).
47.
K. K.
Kabanemi
and
J.-F.
Hétu
, “
A reptation-based model to the dynamics and rheology of linear entangled polymers reinforced with nanoscale rigid particles
,”
J. Non-Newtonian Fluid Mech.
165
,
866
(
2010
).
48.
J.
Sprakel
,
S. B.
Lindström
,
T. E.
Kodger
, and
D. A.
Weitz
, “
Stress enhancement in the delayed yielding of colloidal gels
,”
Phys. Rev. Lett.
106
,
248303
(
2011
).
49.
L. C.
Hsiao
,
R. S.
Newman
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16029
(
2012
).
50.
N. A.
Koratkar
,
J.
Suhr
,
A.
Joshi
,
R. S.
Kane
,
L. S.
Schadler
,
P. M.
Ajayan
, and
S.
Bartolucci
, “
Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites
,”
Appl. Phys. Lett.
87
,
063102
(
2005
).
51.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow
,”
Macromol. Theory Simul.
24
,
352
(
2015
).
52.
A. J.
Giacomin
and
J. M.
Dealy
, “
Using large-amplitude oscillatory shear
,” in
Rheological Measurement
(Springer, Dordrecht, 1998), pp.
327
356
.
53.
K.
Hyun
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
,
1697
(
2011
).
54.
D.
Szopinski
and
G. A.
Luinstra
, “
Viscoelastic properties of aqueous guar gum derivative solutions under large amplitude oscillatory shear (LAOS)
,”
Carbohydr. Polym.
153
,
312
(
2016
).
55.
M.
Wilhelm
,
P.
Reinheimer
, and
M.
Ortseifer
, “
High sensitivity Fourier-transform rheology
,”
Rheol. Acta
38
,
349
(
1999
).
56.
K. S.
Cho
,
K.
Hyun
,
K. H.
Ahn
, and
S. J.
Lee
, “
A geometrical interpretation of large amplitude oscillatory shear response
,”
J. Rheol.
49
,
747
(
2005
).
57.
A. J.
Giacomin
and
J. M.
Dealy
, “
Large-amplitude oscillatory shear
,” in
Techniques in Rheological Measurement
(Springer, Dordrecht, 1993), pp.
99
121
.
58.
A.
Giacomin
,
R.
Bird
,
L.
Johnson
, and
A.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
,
1081
(
2011
).
59.
R. H.
Ewoldt
,
A.
Hosoi
, and
G. H.
McKinley
, “
New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear
,”
J. Rheol.
52
,
1427
(
2008
).
60.
R. H.
Ewoldt
,
C.
Clasen
,
A. E.
Hosoi
, and
G. H.
McKinley
, “
Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion
,”
Soft Matter
3
,
634
(
2007
).
61.
Y.
Serero
,
V.
Jacobsen
,
J.-F.
Berret
, and
R.
May
, “
Evidence of nonlinear chain stretching in the rheology of transient networks
,”
Macromolecules
33
,
1841
(
2000
).
62.
E.
Senses
and
P.
Akcora
, “
Mechanistic model for deformation of polymer nanocomposite melts under large amplitude shear
,”
J. Polym. Sci., Part B: Polym. Phys.
51
,
764
(
2013
).
63.
A.
Papon
,
H.
Montes
,
F.
Lequeux
, and
L.
Guy
, “
Nonlinear rheology of model filled elastomers
,”
J. Polym. Sci., Part B: Polym. Phys.
48
,
2490
(
2010
).
64.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
,
043101
(
2017
).
65.
M. J.
Armstrong
,
A. N.
Beris
,
S. A.
Rogers
, and
N. J.
Wagner
, “
Dynamic shear rheology of a thixotropic suspension: Comparison of an improved structure-based model with large amplitude oscillatory shear experiments
,”
J. Rheol.
60
,
433
(
2016
).
66.
P. R.
de Souza Mendes
,
R. L.
Thompson
,
A. A.
Alicke
, and
R. T.
Leite
, “
The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter
,”
J. Rheol.
58
,
537
(
2014
).
67.
H. T.
Lim
,
K. H.
Ahn
,
J. S.
Hong
, and
K.
Hyun
, “
Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow
,”
J. Rheol.
57
,
767
(
2013
).
68.
A. S.
Sarvestani
, “
On the emergence of the Payne effect in polymer melts reinforced with nanoparticles
,”
Macromol. Theory Simul.
25
,
312
(
2016
).

Supplementary Material

You do not currently have access to this content.