We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.

1.
Astarita
,
G.
, “
Thermodynamics of dissipative materials with entropic elasticity
,”
Polym. Eng. Sci.
14
(
10
),
730
733
(
1974
).
2.
Barrett
,
J. W.
and
Boyaval
,
S.
, “
Existence and approximation of a (regularized) Oldroyd-B model
,”
Math. Models Methods Appl. Sci.
21
(
9
),
1783
1837
(
2011
).
3.
Bhave
,
A. V.
,
Armstrong
,
R. C.
, and
Brown
,
R. A.
, “
Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions
,”
J. Chem. Phys.
95
(
4
),
2988
3000
(
1991
).
4.
Biello
,
J. A.
and
Thomases
,
B.
, “
Equilibrium circulation and stress distribution in viscoelastic creeping flow
,”
J. Non-Newtonian Fluid Mech.
229
(
Suppl. C
),
101
111
(
2016
).
5.
Borino
,
G.
and
Polizzotto
,
C.
, “
A method to transform a nonlocal model into a gradient one within elasticity and plasticity
,”
Eur. J. Mech. - A/Solids
46
,
30
41
(
2014
).
6.
Bulíček
,
M.
,
Málek
,
J.
, and
Průša
,
V.
, “
Thermodynamics and stability of non-equilibrium steady states in open systems
,” e-print arXiv:1709.05968 (
2017
).
7.
Bulíček
,
M.
,
Málek
,
J.
,
Průša
,
V.
, and
Süli
,
E.
, “
A PDE-analysis for a class of thermodynamically compatible viscoelastic rate type fluids with stress diffusion
,”
Contemp. Math.
(to be published); preprint arXiv:1707.02350.
8.
Callen
,
H. B.
,
Thermodynamics and An Introduction to Thermostatistics
, Revised ed. (
John Wiley & Sons
,
1985
).
9.
Cates
,
M. E.
and
Fielding
,
S. M.
, “
Rheology of giant micelles
,”
Adv. Phys.
55
(
7-8
),
799
879
(
2006
).
10.
Cheng
,
P.
,
Burroughs
,
M. C.
,
Leal
,
L. G.
, and
Helgeson
,
M. E.
, “
Distinguishing shear banding from shear thinning in flows with a shear stress gradient
,”
Rheol. Acta
56
(
12
),
1007
1032
(
2017
).
11.
Chupin
,
L.
,
Ichim
,
A.
, and
Martin
,
S.
, “
Stationary Oldroyd model with diffusive stress in thin pipes
,”
Z. Angew. Math. Mech.
98
(
1
),
147
172
(
2018
).
12.
Chupin
,
L.
and
Martin
,
S.
, “
Stationary Oldroyd model with diffusive stress: Mathematical analysis of the model and vanishing diffusion process
,”
J. Non-Newtonian Fluid Mech.
218
,
27
39
(
2015
).
13.
Coleman
,
B. D.
, “
On the stability of equilibrium states of general fluids
,”
Arch. Ration. Mech. Anal.
36
(
1
),
1
32
(
1970
).
14.
Dhont
,
J. K. G.
and
Briels
,
W. J.
, “
Gradient and vorticity banding
,”
Rheol. Acta
47
(
3
),
257
281
(
2008
).
15.
Divoux
,
T.
,
Fardin
,
M. A.
,
Manneville
,
S.
, and
Lerouge
,
S.
, “
Shear banding of complex fluids
,”
Annu. Rev. Fluid Mech.
48
(
1
),
81
103
(
2016
).
16.
Dressler
,
M.
,
Edwards
,
B. J.
, and
Öttinger
,
H. C.
, “
Macroscopic thermodynamics of flowing polymeric liquids
,”
Rheol. Acta
38
(
2
),
117
136
(
1999
).
17.
El-Kareh
,
A. W.
and
Leal
,
L. G.
, “
Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion
,”
J. Non-Newtonian Fluid Mech.
33
(
3
),
257
287
(
1989
).
18.
Eringen
,
A. C.
,
Nonlocal Continuum Field Theories
(
Springer-Verlag
,
New York
,
2002
).
19.
Fardin
,
M. A.
,
Ober
,
T. J.
,
Gay
,
C.
,
Gregoire
,
G.
,
McKinley
,
G. H.
, and
Lerouge
,
S.
, “
Potential ‘ways of thinking’ about the shear-banding phenomenon
,”
Soft Matter
8
,
910
922
(
2012
).
20.
Fardin
,
M.-A.
,
Radulescu
,
O.
,
Morozov
,
A.
,
Cardoso
,
O.
,
Browaeys
,
J.
, and
Lerouge
,
S.
, “
Stress diffusion in shear banding wormlike micelles
,”
J. Rheol.
59
(
6
),
1335
1362
(
2015
).
21.
Fielding
,
S. M.
, “
Complex dynamics of shear banded flows
,”
Soft Matter
3
,
1262
1279
(
2007
).
22.
Fried
,
E.
and
Gurtin
,
M. E.
, “
Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales
,”
Arch. Ration. Mech. Anal.
182
(
3
),
513
554
(
2006
).
23.
Giesekus
,
H.
, “
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
,”
J. Non-Newtonian Fluid Mech.
11
(
1-2
),
69
109
(
1982
).
24.
Glansdorff
,
P.
and
Prigogine
,
I.
,
Thermodynamic Theory of Structure, Stability and Fluctuations
(
Wiley-Interscience
,
London
,
1971
).
25.
Grmela
,
M.
, “
Letter to the editor: Comment on ‘Thermodynamics of viscoelastic fluids: The temperature equation’ [J. Rheol. 42, 999–1019 (1998)]
,”
J. Rheol.
42
(
6
),
1565
1567
(
1998
).
26.
Grmela
,
M.
, “
Externally driven macroscopic systems: Dynamics versus thermodynamics
,”
J. Stat. Phys.
166
(
2
),
282
316
(
2017
).
27.
Grmela
,
M.
and
Carreau
,
P.
, “
Conformation tensor rheological models
,”
J. Non-Newtonian Fluid Mech.
23
(
C
),
271
294
(
1987
).
28.
Grmela
,
M.
and
Öttinger
,
H. C.
, “
Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
,”
Phys. Rev. E
56
(
6
),
6620
6632
(
1997
).
29.
Gurtin
,
M. E.
, “
Thermodynamics and stability
,”
Arch. Ration. Mech. Anal.
59
(
1
),
63
96
(
1975
).
30.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
The Mechanics and Thermodynamics of Continua
(
Cambridge University Press
,
Cambridge
,
2010
).
31.
Heida
,
M.
and
Málek
,
J.
, “
On compressible Korteweg fluid-like materials
,”
Int. J. Eng. Sci.
48
(
11
),
1313
1324
(
2010
).
32.
Helgeson
,
M. E.
,
Reichert
,
M. D.
,
Hu
,
Y. T.
, and
Wagner
,
N. J.
, “
Relating shear banding, structure, and phase behavior in wormlike micellar solutions
,”
Soft Matter
5
,
3858
3869
(
2009a
).
33.
Helgeson
,
M. E.
,
Vasquez
,
P. A.
,
Kaler
,
E. W.
, and
Wagner
,
N. J.
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
(
3
),
727
756
(
2009b
).
34.
Henry
,
D.
,
Geometric Theory of Semilinear Parabolic Equations
, Lecture Notes in Mathematics Vol. 840 (
Springer-Verlag
,
Berlin
,
1981
).
35.
Hron
,
J.
,
Miloš
,
V.
,
Průša
,
V.
,
Souček
,
O.
, and
Tůma
,
K.
, “
On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients
,”
Int. J. Non-Linear Mech.
95
,
193
208
(
2017
).
36.
Hütter
,
M.
,
Luap
,
C.
, and
Öttinger
,
H. C.
, “
Energy elastic effects and the concept of temperature in flowing polymeric liquids
,”
Rheol. Acta
48
(
3
),
301
316
(
2009
).
37.
Ionescu
,
T. C.
,
Edwards
,
B. J.
,
Keffer
,
D. J.
, and
Mavrantzas
,
V. G.
, “
Energetic and entropic elasticity of nonisothermal flowing polymers: Experiment, theory, and simulation
.
J. Rheol.
52
(
1
),
105
140
(
2008
).
38.
Ireka
,
I.
and
Chinyoka
,
T.
, “
Analysis of shear banding phenomena in non-isothermal flow of fluids governed by the diffusive Johnson–Segalman model
,”
Appl. Math. Modell.
40
(
5–6
),
3843
3859
(
2016
).
39.
Janečka
,
A.
and
Pavelka
,
M.
, “
Gradient dynamics and entropy production maximization
,”
J. Non-Equilib. Thermodyn.
43
,
1
19
(
2018
).
40.
Javili
,
A.
,
dell’Isola
,
F.
, and
Steinmann
,
P.
, “
Geometrically nonlinear higher-gradient elasticity with energetic boundaries
,”
J. Mech. Phys. Solids
61
(
12
),
2381
2401
(
2013
).
41.
Johnson
,
M. W.
and
Segalman
,
D.
, “
A model for viscoelastic fluid behavior which allows non-affine deformation
,”
J. Non-Newtonian Fluid Mech.
2
(
3
),
255
270
(
1977
).
42.
Kannan
,
K.
and
Rajagopal
,
K. R.
, “
A thermomechanical framework for the transition of a viscoelastic liquid to a viscoelastic solid
,”
Math. Mech. Solids
9
(
1
),
37
59
(
2004
).
43.
Kannan
,
K.
,
Rao
,
I. J.
, and
Rajagopal
,
K. R.
, “
A thermomechanical framework for the glass transition phenomenon in certain polymers and its application to fiber spinning
,”
J. Rheol.
46
(
4
),
977
999
(
2002
).
44.
Krishnan
,
J. M.
and
Rajagopal
,
K. R.
, “
Thermodynamic framework for the constitutive modeling of asphalt concrete: Theory and applications
,”
J. Mater. Civ. Eng.
16
(
2
),
155
166
(
2004
).
45.
La Salle
,
J.
and
Lefschetz
,
S.
,
Stability by Liapunov’s Direct Method with Applications
(
Academic Press
,
1961
).
46.
Leonov
,
A. I.
, “
Nonequilibrium thermodynamics and rheology of viscoelastic polymer media
,”
Rheol. Acta
15
(
2
),
85
98
(
1976
).
47.
Leonov
,
A. I.
and
Prokunin
,
A. N.
,
Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids
(
Springer
,
1994
).
48.
Lu
,
C.-Y.
,
Olmsted
,
P. D.
, and
Ball
,
R. C.
, “
Effects of nonlocal stress on the determination of shear banding flow
,”
Phys. Rev. Lett.
84
,
642
645
(
2000
).
49.
Málek
,
J.
and
Průša
,
V.
, “
Derivation of equations for continuum mechanics and thermodynamics of fluids
,” in
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
, edited by
Giga
,
Y.
and
Novotný
,
A.
(
Springer
,
2017
), pp.
1
70
.
50.
Málek
,
J.
,
Rajagopal
,
K. R.
, and
Tůma
,
K.
, “
On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis
,”
Int. J. Non-Linear Mech.
76
,
42
47
(
2015a
).
51.
Málek
,
J.
,
Rajagopal
,
K. R.
, and
Tůma
,
K.
, “
A thermodynamically compatible model for describing the response of asphalt binders
,”
Int. J. Pavement Eng.
16
(
4
),
297
314
(
2015b
).
52.
Marrucci
,
G.
, “
The free energy constitutive equation for polymer solutions from the dumbbell model
,”
Trans. Soc. Rheol.
16
(
2
),
321
330
(
1972
).
53.
Mattos
,
H. S. C.
, “
A thermodynamically consistent constitutive theory for fluids
,”
Int. J. Non-Linear Mech.
33
(
1
),
97
110
(
1998
).
54.
Mohammadigoushki
,
H.
and
Muller
,
S. J.
, “
A flow visualization and superposition rheology study of shear-banding wormlike micelle solutions
,”
Soft Matter
12
(
4
),
1051
1061
(
2016
).
55.
Oldroyd
,
J. G.
, “
On the formulation of rheological equations of state
,”
Proc. R. Soc. A
200
(
1063
),
523
541
(
1950
).
56.
Olmsted
,
P. D.
, “
Perspectives on shear banding in complex fluids
,”
Rheol. Acta
47
(
3
),
283
300
(
2008
).
57.
Olmsted
,
P. D.
,
Radulescu
,
O.
, and
Lu
,
C.-Y. D.
, “
Johnson–Segalman model with a diffusion term in cylindrical Couette flow
,
J. Rheol.
44
(
2
),
257
275
(
2000
).
58.
Phan-Thien
,
N.
,
Understanding Viscoelasticity: An Introduction to Rheology
, 2nd ed. (
Springer
,
2013
).
59.
Polizzotto
,
C.
, “
A gradient elasticity theory for second-grade materials and higher order inertia
,”
Int. J. Solids Struct.
49
(
15–16
),
2121
2137
(
2012
).
60.
Průša
,
V.
and
Rajagopal
,
K. R.
, “
On models for viscoelastic materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck–Boussinesq type approximations
,”
Math. Models Methods Appl. Sci.
23
(
10
),
1761
1794
(
2013
).
61.
Rajagopal
,
K. R.
and
Srinivasa
,
A. R.
, “
A thermodynamic frame work for rate type fluid models
,”
J. Non-Newtonian Fluid Mech.
88
(
3
),
207
227
(
2000
).
62.
Rajagopal
,
K. R.
and
Srinivasa
,
A. R.
, “
On thermomechanical restrictions of continua
,”
Proc. R. Soc. A
460
(
2042
),
631
651
(
2004
).
63.
Rajagopal
,
K. R.
and
Srinivasa
,
A. R.
, “
On the thermodynamics of fluids defined by implicit constitutive relations
,”
Z. Angew. Math. Phys.
59
(
4
),
715
729
(
2008
).
64.
Rao
,
I. J.
and
Rajagopal
,
K. R.
, “
A thermodynamic framework for the study of crystallization in polymers
,”
Z. Angew. Math. Phys.
53
(
3
),
365
406
(
2002
).
65.
Sarti
,
G. C.
and
Esposito
,
N.
, “
Testing thermodynamic constitutive equations for polymers by adiabatic deformation experiments
,”
J. Non-Newtonian Fluid Mech.
3
(
1
),
65
76
(
1977
).
66.
Šilhavý
,
M.
, “
The mechanics and thermodynamics of continuous media
,” in
Texts and Monographs in Physics
(
Springer-Verlag
,
Berlin
,
1997
).
67.
Šilhavý
,
M.
, “
Higher gradient expansion for linear isotropic peridynamic materials
,”
Math. Mech. Solids
22
(
6
),
1483
1493
(
2017
).
68.
Subbotin
,
A. V.
,
Malkin
,
A. Y.
, and
Kulichikhin
,
V. G.
, “
Self-organization in the flow of complex fluids (colloid and polymer systems). Part 2: Theoretical models
,”
Adv. Colloid Interface Sci.
162
(
1–2
),
29
38
(
2011
).
69.
Thomases
,
B.
, “
An analysis of the effect of stress diffusion on the dynamics of creeping viscoelastic flow
,”
J. Non-Newtonian Fluid Mech.
166
(
21
),
1221
1228
(
2011
).
70.
Wapperom
,
P.
and
Hulsen
,
M. A.
, “
Thermodynamics of viscoelastic fluids: The temperature equation
,”
J. Rheol.
42
(
5
),
999
1019
(
1998
).
71.
Wineman
,
A. S.
and
Rajagopal
,
K. R.
,
Mechanical Response of Polymers—An Introduction
(
Cambridge University Press
,
Cambridge
,
2000
).
72.
Yoshizawa
,
T.
,
Stability Theory by Liapunov’s Second Method
(
The Mathematical Society of Japan
,
Tokyo
,
1966
), Vol. 9.
73.
Ziegler
,
H.
and
Wehrli
,
C.
, “
The derivation of constitutive relations from the free energy and the dissipation function
,”
Adv. Appl. Mech.
25
,
183
238
(
1987
).
You do not currently have access to this content.