A possibility of saturating Rayleigh-Taylor instability in a thin liquid film on the underside of a substrate in the gravity field by harmonic vibration of the substrate was recently investigated [E. Sterman-Cohen, M. Bestehorn, and A. Oron, Phys. Fluids 29, 052105 (2017); Erratum, Phys. Fluids 29, 109901 (2017)]. In the present work, we investigate the feasibility of creating a directional flow of the fluid in a film in the Rayleigh-Taylor configuration and controlling its flow rate by applying a two-frequency tangential forcing to the substrate. It is shown that in this situation, a ratchet flow develops, and the dependence of its flow rate on the vibration frequency, amplitude, its periodicity, and asymmetry level is investigated for water and silicone-oil films. A cause for the emergence of symmetry-breaking and an ensuing flow in a preferred direction is discussed. Some aspects of a ratchet flow in a liquid film placed on top of the substrate are discussed as well. A comparison with the case of a neglected fluid inertia is made, and the differences are explained.

1.
Lord
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-14
,
170
(
1882
).
2.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (part I)
,”
Proc. R. Soc. A
201
,
192
(
1950
).
3.
D. J.
Lewis
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (part II)
,”
Proc. R. Soc. A
202
,
81
(
1950
).
4.
D. H.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Phys. D
12
,
3
(
1984
).
5.
H. J.
Kull
, “
Theory of the Rayleigh-Taylor instability
,”
Phys. Rep.
206
,
197
(
1991
).
6.
C. C.
Kuranz
,
R. P.
Drake
,
E. C.
Harding
,
M. J.
Grosskopf
,
H. F.
Robey
,
B. A.
Remington
,
M. J.
Edwards
,
A. R.
Miles
,
T. S.
Perry
,
B. E.
Blue
,
T.
Plewa
,
N. C.
Hearn
,
J. P.
Knauer
,
D.
Arnett
, and
D. R.
Leibrandt
, “
Two dimensional blast-wave-driven Rayleigh–Taylor instability: Experiment and simulation
,”
Astrophys. J.
696
,
749
(
2009
).
7.
S.
Miller
and
G.
Kliminz
, “
The role of Rayleigh-Taylor instability in shaped charge jets formation and stability
,” in
22nd International Symposium
,
Ballistics, Canada
,
2005
.
8.
J. M.
Burgess
,
A.
Juel
,
W. D.
McCormick
,
J. B.
Swift
, and
H. L.
Swinney
, “
Suppression of dripping from a ceiling
,”
Phys. Rev. Lett.
86
,
1203
(
2001
).
9.
R.
Seemann
,
S.
Herminghaus
,
C.
Neto
,
S.
Schlagowski
,
D.
Podzimek
,
R.
Konrad
,
H.
Mantz
, and
K.
Jacobs
, “
Dynamics and structure formation in thin polymer melt films
,”
J. Phys.: Condens. Matter
17
,
S267
(
2005
).
10.
F. C.
Haas
, “
Stability of droplets suddenly exposed to a high velocity gas stream
,”
AIChE J.
10
,
920
(
1964
).
11.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices towards lab on a chip
,”
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
12.
S. G.
Yiantsios
and
B. G.
Higgins
, “
Rayleigh-Taylor instability in thin viscous films
,”
Phys. Fluids A
1
,
1484
(
1989
).
13.
S. G.
Yiantsios
and
B. G.
Higgins
, “
Rupture of thin films: Nonlinear stability analysis
,”
J. Colloid Interface Sci.
147
,
341
(
1991
).
14.
A.
Oron
and
P.
Rosenau
, “
Formation of patterns induced by thermocapillarity and gravity
,”
J. Phys. II
2
,
131
(
1992
).
15.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
980
(
1997
).
16.
R. J.
Deissler
and
A.
Oron
, “
Stable localized patterns in thin liquid films
,”
Phys. Rev. Lett.
68
,
2948
(
1992
).
17.
A.
Alexeev
and
A.
Oron
, “
Suppression of the Rayleigh-Taylor instability of thin liquid films by the Marangoni effect
,”
Phys. Fluids
19
,
082101
(
2007
).
18.
P. H.
Trinh
,
H.
Kim
,
N.
Hammoud
,
P. D.
Howell
,
S. J.
Chapman
, and
H. A.
Stone
, “
Curvature suppresses the Rayleigh-Taylor instability
,”
Phys. Fluids
26
,
051704
(
2014
).
19.
A. J.
Babchin
,
A. L.
Frenkel
,
B. G.
Levich
, and
G. I.
Sivashinsky
, “
Nonlinear saturation of Rayleigh–Taylor instability in thin films
,”
Phys. Fluids
26
,
3159
(
1983
).
20.
T.-S.
Lin
,
L.
Kondic
, and
A.
Filippov
, “
Thin films flowing down inverted substrates: Three-dimensional flow
,”
Phys. Fluids
24
,
022105
(
2012
).
21.
W.
Batson
,
Y.
Agnon
, and
A.
Oron
, “
Mass variation of a thin liquid film driven by an acoustic wave
,”
Phys. Fluids
27
,
062106
(
2015
).
22.
D.
Halpern
and
A. L.
Frenkel
, “
Saturated Rayleigh-Taylor instability of an oscillating Couette film flow
,”
J. Fluid Mech.
446
,
67
(
2001
).
23.
E.
Sterman-Cohen
,
M.
Bestehorn
, and
A.
Oron
, “
Rayleigh-Taylor instability in thin liquid films subjected to harmonic vibrations
,”
Phys. Fluids
29
,
052105
(
2017
);
E.
Sterman-Cohen
,
M.
Bestehorn
, and
A.
Oron
, Erratum,
Phys. Fluids
29
,
109901
(
2017
).
24.
A. L.
Frenkel
and
D.
Halpern
, “
On saturation of Rayleigh-Taylor instability
,” in
Fluid Mechanics and its Applications
, IUTAM Symposium on Nonlinear Waves in Multi-Phase Flow, Vol. 57, edited by
H.-C.
Chang
(
Springer
,
Dordrecht
,
2000
).
25.
M.
Bestehorn
,
Q.
Han
, and
A.
Oron
, “
Nonlinear pattern formation in thin liquid films under external vibrations
,”
Phys. Rev. E
88
,
023025
(
2013
).
26.
M.
Bestehorn
, “
Laterally extended thin liquid films with inertia under external vibrations
,”
Phys. Fluids
25
,
114106
(
2013
).
27.
M.
Prakash
,
D.
Quéré
, and
J. W. M.
Bush
, “
Surface tension transport of prey by feeding shorebirds: The capillary ratchet
,”
Science
320
,
931
(
2008
).
28.
L.
Wang
,
H.
Wu
, and
F.
Wang
, “
Efficient transport of droplet sandwiched between saw-tooth plates
,”
J. Colloid Interface Sci.
462
,
280
(
2016
).
29.
S.
Natesh
,
E.
Truong
,
V.
Narayanan
, and
S.
Bhavnani
, “
Condensation on a horizontal surface with periodic asymmetrical structures–transient film growth
,”
Int. J. Heat Mass Transfer
108
,
1126
(
2017
).
30.
Y. S.
Lubbersen
,
M. A. I.
Schutyser
, and
R. M.
Boom
, “
Suspension separation with deterministic ratchets at moderate Reynolds numbers
,”
Chem. Eng. Sci.
73
,
314
(
2012
).
31.
Y. S.
Lubbersen
,
J. P.
Dijkshoorn
,
M. A. I.
Schutyser
, and
R. M.
Boom
, “
Visualization of inertial flow in deterministic ratchets
,”
Sep. Purif. Technol.
109
,
33
(
2013
).
32.
B. K.
Lin
,
S. M.
McFaul
,
C.
Jin
,
P. C.
Black
, and
H.
Ma
, “
Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator
,”
Biomicrofluidics
7
,
034114
(
2013
).
33.
S. M.
McFaul
,
B. K.
Lin
, and
H.
Ma
, “
Cell separation based on size and deformability using microfluidic funnel ratchets
,”
Lab Chip
12
,
2369
(
2012
).
34.
E. S.
Park
,
C.
Jin
,
Q.
Guo
,
R. R.
Ang
,
S. P.
Duffy
,
K.
Matthews
,
A.
Azad
,
H.
Abdi
,
T.
Todenhöfer
,
J.
Bazov
,
K. N.
Chi
,
P. C.
Black
, and
H.
Ma
, “
Continuous flow deformability-based separation of circulating tumor cells using microfluidic ratchets
,”
Small
12
,
1909
(
2016
).
35.
S.-C.
Kim
,
B. H.
Wunsch
,
H.
Hu
,
J. T.
Smith
,
R. H.
Austin
, and
G.
Stolovitzky
, “
Broken flow symmetry explains the dynamics of small particles in deterministic lateral displacement arrays
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E5034
(
2017
).
36.
R. D.
Astumian
and
P.
Hänggi
, “
Brownian motors
,”
Phys. Today
55
(
11
),
33
(
2002
).
37.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Tilted Brownian ratchet for DNA analysis
,”
Anal. Chem.
75
,
6963
(
2003
).
38.
R.
Di Leonardo
,
L.
Angelani
,
D.
Dell’Arciprete
,
G.
Ruocco
,
V.
Iebba
,
S.
Schippa
,
M. P.
Conte
,
F.
Mecarini
,
F.
De Angelis
, and
E.
Di Fabrizio
, “
Bacterial ratchet motors
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
9541
(
2010
).
39.
B.-Q.
Ai
,
Y.-F.
He
,
F.-G.
Li
, and
W.-R.
Zhong
, “
Hydrodynamically enforced entropic Brownian pump
,”
J. Chem. Phys.
138
,
154107
(
2013
).
40.
J. C.
Sturm
,
E. C.
Cox
,
B.
Comella
, and
R. H.
Austin
, “
Ratchets in hydrodynamic flow: More than waterwheels
,”
Interface Focus
4
,
20140054
(
2014
).
41.
H.
Linke
,
B. J.
Alemán
,
L. D.
Melling
,
M. J.
Taormina
,
M. J.
Francis
,
C. C.
Dow-Hygelund
,
V.
Narayanan
,
R. P.
Taylor
, and
A.
Stout
, “
Self-propelled Leidenfrost droplets
,”
Phys. Rev. Lett.
96
,
154502
(
2006
).
42.
G.
Lagubeau
,
M.
Le Merrer
,
C.
Clanet
, and
D.
Quéré
, “
Leidenfrost on a ratchet
,”
Nat. Phys.
7
,
395
(
2011
).
43.
G.
Dupeux
,
M.
Le Merrer
,
G.
Lagubeau
,
C.
Clanet
,
S.
Hardt
, and
D.
Quéré
, “
Viscous mechanism for Leidenfrost propulsion on a ratchet
,”
Europhys. Lett.
96
,
58001
(
2011
).
44.
Á. G.
Marín
,
D. A.
del Cerro
,
G. R. B. E.
Römer
,
B.
Pathiraj
,
A. H.
in’t Veld
, and
D.
Lohse
, “
Capillary droplets on Leidenfrost micro-ratchets
,”
Phys. Fluids
24
,
122001
(
2012
).
45.
D.
Quéré
, “
Leidenfrost dynamics
,”
Annu. Rev. Fluid Mech.
45
,
197
(
2013
).
46.
G.
Dupeux
,
T.
Baier
,
V.
Bacot
,
S.
Hardt
,
C.
Clanet
, and
D.
Quéré
, “
Self-propelling uneven Leidenfrost solids
,”
Phys. Fluids
25
,
051704
(
2013
).
47.
Z.-H.
Jia
,
M.-Y.
Chen
, and
H.-T.
Zhu
, “
Reversible self-propelled Leidenfrost droplets on ratchet surfaces
,”
Appl. Phys. Lett.
110
,
091603
(
2017
).
48.
A. D.
Stroock
,
R. F.
Ismagilov
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Fluidic ratchet based on Marangoni-Bénard convection
,”
Langmuir
19
,
4358
(
2003
).
49.
V.
Frumkin
and
A.
Oron
, “
Liquid film flow along a substrate with an asymmetric topography sustained by the thermocapillary effect
,”
Phys. Fluids
28
,
082107
(
2016
).
50.
V.
Frumkin
and
A.
Oron
, “
Thermocapillary flow of a thin liquid film in a confined two-layer system under a hydrophobic plate
,”
Phys. Rev. Fluids
2
,
104002
(
2017
).
51.
P.
Brunet
,
J.
Eggers
, and
R. D.
Deegan
, “
Vibration-induced climbing of drops
,”
Phys. Rev. Lett.
99
,
144501
(
2007
).
52.
U.
Thiele
and
K.
John
, “
Transport of free surface liquid films and drops by external ratchets and self-ratcheting mechanisms
,”
Chem. Phys.
375
,
578
(
2010
).
53.
K.
John
and
U.
Thiele
, “
Self-ratcheting Stokes drops driven by oblique vibrations
,”
Phys. Rev. Lett.
104
,
107801
(
2010
).
54.
W.-C.
Lo
,
H. C.
Hong
,
H. J.
Choi
,
P.-Y.
Lai
, and
C. K.
Chan
, “
Stretching and migration of DNA by solvent elasticity in an oscillatory flow
,”
Phys. Rev. E
84
,
021802
(
2011
).
55.
Z.
Zhang
,
H.
Stark
, and
A. S.
Mikhailov
, “
Hydrodynamic ratchet: Controlled motion of a polymer in an alternating microchannel flow
,”
Europhys. Lett.
104
,
14002
(
2013
).
56.
R. L.
Agapov
,
J. B.
Boreyko
,
D. P.
Briggs
,
B. R.
Srijanto
,
S. T.
Retterer
,
C. P.
Collier
, and
N. V.
Lavrik
, “
Length scale selects directionality of droplets on vibrating pillar ratchet
,”
Adv. Mater. Interfaces
1
,
1400337
(
2014
).
57.
T.
Shinbrot
,
M.
Rutala
,
A.
Montessori
,
P.
Prestininzi
, and
S.
Succi
, “
Paradoxical ratcheting in cornstarch
,”
Phys. Fluids
27
,
103101
(
2015
).
58.
H.
Ding
,
X.
Zhu
,
P.
Gao
, and
X.-Y.
Lu
, “
Ratchet mechanism of drops climbing a vibrated oblique plate
,”
J. Fluid Mech.
835
,
R1
(
2018
).
59.
D. W.
Jordan
and
P.
Smith
,
Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems
, 3rd ed. (
Oxford University Press
,
1999
).
60.
O.
Haimovich
and
A.
Oron
, “
Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface
,”
Phys. Fluids
22
,
032101
(
2010
).
61.
A.
Oron
,
O.
Gottlieb
, and
E.
Novbari
, “
Numerical analysis of a weighted-residual integral boundary-layer model for nonlinear dynamics of falling liquid films
,”
Eur. J. Mech. B/Fluids
28
,
1
36
(
2009
).

Supplementary Material

You do not currently have access to this content.