Electrokinetics and the movement of charge-selective micro-granules in an electrolyte solution under the influence of an external electric field are investigated theoretically. Straightforward perturbation analysis is applied to a thin electric double layer and a weak external field, while a numerical solution is used for moderate electric fields. The asymptotic solution enables the determination of the salt concentration, electric charge distribution, and electro-osmotic velocity fields. It may also be used to obtain a simple analytical formula for the electrophoretic velocity in the case of quasi-equilibrium electrophoresis (electrophoresis of the first kind). This formula differs from the famous Helmholtz-Smoluchowski relation, which applies to dielectric microparticles, but not to ion-selective granules. Numerical calculations are used to validate the derived formula for weak external electric fields, but for moderate fields, nonlinear effects lead to a significant increase in electrophoretic mobility and to a transition from quasi-equilibrium electrophoresis of the first kind to nonequilibrium electrophoresis of the second kind. Theoretical results are successfully compared with experimental data.

1.
S.
Park
,
T.
Chung
, and
H.
Kim
, “
Ion bridges in microfluidic systems
,”
Microfluid. Nanofluid.
6
,
315
331
(
2009
).
2.
H.-C.
Chang
and
L. Y.
Yeo
,
Electrokinetically Driven Microfluidics and Nanofluidics
(
Cambridge University Press
,
Cambridge/New York
,
2010
).
3.
M.
Napoli
,
J. C. T.
Eijkel
, and
S.
Pennathur
, “
Nanofluidic technology for biomolecule applications: A critical review
,”
Lab Chip
10
,
957
985
(
2010
).
4.
J.-L.
Viovy
, “
Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms
,”
Rev. Mod. Phys.
72
(
3
),
813
(
2000
).
5.
M.
Smoluchowski
, “
Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs
,”
J. Phys. Theor. Appl.
3
,
912
(
1904
).
6.
H.
Helmholtz
, “
Studien über electrische grenzschichten
,”
Ann. Phys. Chem.
243
(
7
),
337
(
1879
).
7.
R. W.
O’Brien
and
L. R.
White
, “
Electrophoretic mobility of a spherical colloidal particle
,”
J. Chem. Soc., Faraday Trans. 2
74
,
1607
(
1978
).
8.
E.
Yariv
, “
An asymptotic derivation of the thin-Debye-layer limit for electrokinetic phenomena
,”
Chem. Eng. Commun.
197
,
3
(
2010
).
9.
M. Z.
Bazant
, “
Induced-charge electrokinetic phenomena
,” in
Electrokinetics and Electrohydrodynamics in Microsystems
, CISM Courses and Lectures, Vol. 530, edited by
A.
Ramos
(
Springer
,
2011
), pp.
221
297
.
10.
A. G.
Van Der Put
and
B. H.
Bijsterbosch
, “
Electrical conductivity of dilute and concentrated aqueous dispersions of monodisperse polystyrene particles. Influence of surface conductance and double-layer polarization
,”
J. Colloid Interface Sci.
75
,
512
524
(
1980
).
11.
P. H.
Wiersema
,
A. L.
Loeb
, and
J. T. G.
Overbeek
, “
Calculation of the electrophoretic mobility of a spherical colloid particle
,”
J. Colloid Interface Sci.
22
,
78
(
1966
).
12.
M.
Hamed
and
E.
Yariv
, “
Induced-charge electrokinetic flows about polarizable nano-particles: The thick-Debye-layer limit
,”
J. Fluid Mech.
627
,
341
360
(
2009
).
13.
E.
Yariv
and
A. M. J.
Davis
, “
Electro-osmotic flows over highly polarizable dielectric surfaces
,”
Phys. Fluids
22
,
052006
(
2010
).
14.
G.
Yossifon
,
I.
Frankel
, and
Miloh
, “
Symmetry breaking in induced charge electro-osmosis over polarizable spheroids
,”
Phys. Fluids
19
,
068105
(
2007
).
15.
O.
Schnitzer
and
E.
Yariv
, “
Dielectric-solid polarization at strong fields: Breakdown of Smoluchowski’s electrophoresis formula
,”
Phys. Fluids
24
,
082005
(
2012
).
16.
O.
Schnitzer
and
E.
Yariv
, “
Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction
,”
Phys. Rev. E
86
,
021503
(
2012
).
17.
O.
Schnitzer
,
R.
Zeyde
,
I.
Yavneh
, and
E.
Yariv
, “
Weakly nonlinear electrophoresis of a highly charged colloidal particle
,”
Phys. Fluids
25
,
052004
(
2013
).
18.
J.
Lyklema
,
Fundamentals of Interface and Colloid Science. Volume II: Solid-Liquid Interfaces
(
Academic Press Limited
,
San Diego, CA
,
1995
).
19.
S. S.
Dukhin
, “
Electrokinetic phenomena of the second kind and their applications
,”
Adv. Colloid Interface Sci.
35
,
173
(
1991
).
20.
N. A.
Mishchuk
and
P. V.
Takhistov
, “
Electroosmosis of the second kind
,”
Colloids Surf., A
95
,
119
(
1995
).
21.
N. O.
Barinova
,
N. A.
Mishchuk
, and
T. A.
Nesmeyanova
, “
Electroosmosis at spherical and cylindrical metal surfaces
,”
Colloid J.
70
,
695
(
2008
).
22.
N. A.
Mishchuk
and
N. O.
Barinova
,“
Theoretical and experimental study of nonlinear electrophoresis
,”
Colloid J.
73
,
88
(
2011
).
23.
S.
Barany
, “
Electrophoresis in strong electric fields
,”
Adv. Colloid Interface Sci.
147
,
36
(
2009
).
24.
S. C.
Wang
,
H. H.
Wei
,
H. P.
Chen
,
M. H.
Tsai
,
C. C.
Yu
, and
H. C.
Chang
, “
Dynamic superconcentration at critical-point double-layer gates of conducting nanoporous granules due to asymmetric tangential fluxes
,”
Biomicrofluidics
2
,
014102
(
2008
).
25.
H.-P.
Chen
,
C.-C.
Tsai
,
H.-M.
Lee
,
S.-C.
Wang
, and
H.-C.
Chang
, “
Selective dynamic concentration of peptides at poles of cation-selective nanoporous granules
,”
Biomicrofluidics
7
,
044110
(
2013
).
26.
T. M.
Squires
and
M. Z.
Bazant
, “
Induced-charge electro-osmosis
,”
J. Fluid Mech.
509
,
217
(
2004
).
27.
I.
Rubinstein
and
L.
Shtilman
, “
Voltage against current curves of cation exchange membranes
,”
J. Chem. Soc., Faraday Trans. 2
75
,
231
(
1979
).
28.
I.
Rubinstein
and
B.
Zaltzman
, “
Electro-osmotically induced convection at a permselective membrane
,”
Phys. Rev. E
62
,
2238
(
2000
).
29.
B.
Zaltzman
and
I.
Rubinstein
, “
Electro-osmotic slip and electroconvective instability
,”
J. Fluid Mech.
579
,
173
226
(
2007
).
30.
E. A.
Demekhin
,
V. S.
Shelistov
, and
S. V.
Polyanskikh
, “
Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability
,”
Phys. Rev. E
84
,
036318
(
2011
).
31.
E. A.
Demekhin
,
N. V.
Nikitin
, and
V. S.
Shelistov
, “
Direct numerical simulation of electrokinetic instability and transition to chaotic motion
,”
Phys. Fluids
25
,
122001
(
2013
).
32.
E. A.
Demekhin
,
N. V.
Nikitin
, and
V. S.
Shelistov
, “
Three-dimensional coherent structures of electrokinetic instability
,”
Phys. Rev. E
90
,
013031
(
2014
).
33.
V. S.
Pham
,
Z.
Li
,
K. M.
Lim
,
J. K.
White
, and
J.
Han
, “
Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane
,”
Phys. Rev. E
86
,
046310
(
2012
).
34.
C. L.
Druzgalski
,
M. B.
Andersen
, and
A.
Mani
, “
Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface
,”
Phys. Fluids
25
,
110804
(
2013
).
35.
R. F.
Probstein
,
Physicochemical Hydrodynamics: An Introduction
(
Wiley
,
New York
,
1995
).
36.
M.
Van Dyke
,
Perturbation Methods in Fluid Mechanics
(
Academic Press
,
New York
,
1964
).
37.
M.
Gouy
, “
Sur la constitution de la charge électrique á la surface d’un électrolyte
,”
J. Phys. Theor. Appl.
9
,
457
(
1910
).
38.
D. L.
Chapman
, “
A contribution to the theory of electrocapillarity
,”
Philos. Mag. Ser. 6
25
,
475
(
1913
).
39.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1965
).
40.
L.
Gary Leal
,
Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis
(
Butterworth-Heinemann
,
1992
).
41.
Y.
Ben
,
E. A.
Demekhin
, and
H. C.
Chang
, “
Nonlinear electrokinetics and ‘superfast’ electrophoresis
,”
J. Colloid Interface Sci.
276
,
483
(
2004
).
You do not currently have access to this content.