This paper is concerned with the surface stability of a bubble in a liquid, fully covered by an elastic solid, which is common in natural and engineering applications. A theoretical model is described for the phenomenon, assuming that the bubble gas undergoes a polytropic process, the flow is irrotational, and the variation of the liquid volume is proportionally related to the liquid pressure. The boundary valued problem is modeled using the perturbation method via the Legendre polynomials, and the evolution equations for radial and shape oscillations of a confined bubble are formulated. We derive an explicit analytical expression for the natural frequency of shape modes for a confined bubble. The analyses lead to interesting conclusions including: the natural frequency of shape mode increases due to the confinement only if the cavity dimension is within 2-3 bubble radii, for which the shape oscillation of a bubble is always stable and damps with time; as the cavity dimension is 10 times larger than the bubble radius, the natural frequency for radial oscillation is significantly larger, while the natural frequency for shape mode remains the same as that for an unconfined bubble. An unconfined bubble experiences shape mode oscillation under the Mathieu relation. By contrast, shape mode resonance of confined bubbles occurs only when both the radial resonance condition and the Mathieu relation are satisfied, which is associated with a much larger driving frequency of ultrasound.

1.
Asaki
,
T. J.
and
Marston
,
P. L.
, “
Free decay of shape oscillations of bubbles acoustically trapped in water and sea water
,”
J. Fluid Mech.
300
,
149
167
(
1995
).
2.
Asaki
,
T. J.
,
Marston
,
P. L.
, and
Trinh
,
E. H.
, “
Shape oscillations of bubbles in water driven by modulated ultrasonic radiation pressure: Observations and detection with scattered laser light
,”
J. Acoust. Soc. Am.
93
,
706
713
(
1993
).
3.
Bender
,
C. M.
and
Orszag
,
S. A.
,
Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory
(
Springer-Verlag
,
New York
,
1999
).
4.
Benjamin
,
T. B.
, “
Surface effects in non-spherical motions of small cavities
,” in
Cavitation in Real Liquids
(
Elsevier
,
1964
), pp.
164
180
.
5.
Bhardwaj
,
S.
,
Dalal
,
A.
,
Biswas
,
G.
, and
Mukherjee
,
P. P.
, “
Analysis of droplet dynamics in a partially obstructed confinement in a three-dimensional channel
,”
Phys. Fluids
30
,
102102
(
2018
).
6.
Bjerknes
,
K.
,
Sontum
,
P. C.
,
Smistad
,
G.
, and
Agerkvista
,
I.
, “
Preparation of polymeric microbubbles: Formulation studies and product characterization
,”
Int. J. Pharm.
158
,
129
136
(
1997
).
7.
Brenner
,
M. P.
,
Hilgenfeldt
,
S.
, and
Lohse
,
D.
, “
Single-bubble sonoluminescence
,”
Rev. Mod. Phys.
74
,
425
484
(
2002
).
8.
Cochard
,
H.
, “
Cavitation in trees
,”
C. R. Phys.
7
,
1018
1026
(
2006
).
9.
de Roo
,
L.
,
Vergeynst
,
L. L.
,
De Baerdemaeker
,
N. J. F.
, and
Steppe
,
K.
, “
Acoustic emissions to measure drought-induced cavitation in plants
,”
Appl. Sci.
6
(
3
),
71
(
2016
).
10.
Dollet
,
B.
,
van der Meer
,
S. M.
,
Garbin
,
V.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
, “
Nonspherical oscillations of ultrasound contrast agent microbubbles
,”
Ultrasound Med. Biol.
34
,
1465
1473
(
2008
).
11.
Feng
,
Z. C.
and
Leal
,
L. G.
, “
Nonlinear bubble dynamics
,”
Annu. Rev. Fluid. Mech.
29
,
201
243
(
1997
).
12.
Feng
,
Z. X.
and
Leal
,
L. G.
, “
On energy transfer in resonant bubble oscillations
,”
Phys. Fluids A
5
,
826
836
(
1993
).
13.
Fourest
,
T.
,
Laurens
,
J.
,
Deletombe
,
E.
,
Dupas
,
J.
, and
Arrigoni
,
M.
, “
Analysis of bubbles dynamics created by hydrodynamic ram in confined geometries using the Rayleigh-Plesset equation
,”
Int. J. Impact Eng.
73
,
66
74
(
2014
).
14.
Hilgenfeldt
,
S.
,
Lohse
,
D.
, and
Brenner
,
M. P.
, “
Phase diagrams for sonoluminescing bubbles
,”
Phys. Fluids
8
(
11
),
2808
2826
(
1996
).
15.
Knapp
,
R. T.
,
Daili
,
J. W.
, and
Hammit
,
F. G.
,
Cavitation
(
Mc Graw Hill Book Company
,
New York
,
1970
).
16.
Lamb
,
H.
,
Hydrodynamics
(
Cambridge University Press
,
1932
).
17.
Lauterborn
,
W.
and
Kurz
,
T.
, “
Physics of bubble oscillations
,”
Rep. Prog. Phys.
73
,
10650
(
2010
).
18.
Marmottant
,
P.
and
Hilgenfeldt
,
S.
, “
A bubble-driven microfluidic transport element for bioengineering
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
9523
9527
(
2004
).
19.
Marti
,
D.
,
Kruger
,
Y.
,
Fleitmann
,
D.
,
Frenz
,
M.
, and
Ricka
,
J.
, “
The effect of surface tension on liquid-gas equilibria in isochoric systems and its application to fluid inclusions
,”
Fluid Phase Equilib.
314
,
13
21
(
2012
).
20.
Martynov
,
S.
,
Stride
,
E.
, and
Saffari
,
N.
, “
The natural frequencies of microbubble oscillation in elastic vessels
,”
J. Acoust. Soc. Am.
126
(
6
),
2963
2972
(
2009
).
21.
Minnaert
,
M.
, “
On musical sir-bubbles and the sound of running water
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
16
,
235
248
(
1933
).
22.
Noblin
,
X.
,
Rojas
,
N. O.
,
Westbrook
,
J.
,
Llorens
,
C.
,
Argentina
,
M.
, and
Dumais
,
J.
, “
The fern sporangium: A unique catapult
,”
Science
335
,
1322
(
2012
).
23.
Plesset
,
M. S.
, “
On the stability of fluid flows with spherical symmetry
,”
J. Appl. Phys.
25
,
96
98
(
1954
).
24.
Plesset
,
M. S.
and
Prosperetti
,
A.
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
25.
Roedder
,
E.
and
Bodnar
,
R. J.
, “
Geologic pressure determinations rom fluid inclusion studies
,”
Annu. Rev. Earth Planet. Sci.
8
,
263
301
(
1980
).
26.
Sharp
,
D. H.
, “
An overview of Rayleigh-Taylor instability
,”
Physica D
12
,
3
18
(
1984
).
27.
Soltani
,
H.
,
Sabbagh
,
R.
, and
Nobes
,
D. S.
, “
The passage of bubbles rising through a confining rectangular geometry
,”
Phys. Fluids
30
,
103302
(
2018
).
28.
Tyree
,
M. T.
and
Sperry
,
J. S.
, “
Vulnerability of xylem to cavitation and embolism
,”
Annu. Rev. Plant Physiol. Plant Mol. Biol.
40
,
19
38
(
1989
).
29.
Versluis
,
M.
,
Goertz
,
D. E.
,
Palanchon
,
P.
,
Heitman
,
I. L.
,
van der Meer
,
S. M.
,
Dollet
,
B.
,
de Jong
,
N.
, and
Lohse
,
D.
, “
Microbubble shape oscillations excited through ultrasonic parametric driving
,”
Phys. Rev. E
82
,
026321
(
2010
).
30.
Vincent
,
O.
and
Marmottant
,
P.
, “
On the statics and dynamics of fully confined bubbles
,”
J. Fluid Mech.
827
,
194
224
(
2017
).
31.
Vincent
,
O.
,
Marmottant
,
P.
,
Gonzalez-Avila
,
S. R.
,
Ando
,
K.
, and
Ohl
,
C. D.
, “
The fast dynamics of cavitation bubbles within water confined in elastic solids
,”
Soft Matter
10
,
1455
1461
(
2014
).
32.
Wang
,
Q. X.
, “
Oscillation of a bubble in a liquid confined in an elastic solid
,”
Phys. Fluids
29
,
072101
(
2017
).
33.
Yang
,
S. M.
,
Feng
,
Z. C.
, and
Leal
,
L. G.
, “
Nonlinear effects in the dynamics of shape and volume oscillations for a gas bubble in an external flow
,”
J. Fluid Mech.
247
,
417
454
(
1993
).
You do not currently have access to this content.