In this study, the flow-induced motion (FIM) of three rigidly coupled cylinders arranged in an equilateral-triangular pattern is numerically investigated. The spacing ratio is set to four times the cylinder diameter, and simulations are conducted for flow incidence angles of α = 0°, 15°, 30°, 45°, and 60°. The reduced velocity Ur is varied from 1 to 30, with corresponding Reynolds numbers of ∼1000–30 000. The two-dimensional Reynolds-averaged Navier–Stokes equations are used in conjunction with the shear stress transport k-ω turbulence model to simulate the turbulent flow, and the vibration equations are solved using the Newmark-beta algorithm. The numerical results indicate that the flow incidence angles and reduced velocity have a significant effect on the FIM response and vortex shedding mode. The widest lock-in range (4 < Ur < 13) occurs when α = 45°, and the narrowest range (3 < Ur < 7) is observed when α = 60°. The optimal arrangement for suppressing the vibration of the cylinders is found to be α = 30°. The vibration and frequency responses for α = 0° and α = 15° are not the same as those of a single cylinder; in particular, galloping phenomena occur for α = 0° when Ur > 12 and become fully developed when Ur > 15.

1.
T.
Sarpkaya
, “
A critical review of the intrinsic nature of vortex-induced vibrations
,”
J. Fluids Struct.
19
,
389
(
2004
).
2.
R.
Kandasamy
,
F.
Cui
,
N.
Townsend
,
C. C.
Foo
,
J.
Guo
,
A.
Shenoi
, and
Y.
Xiong
, “
A review of vibration control methods for marine offshore structures
,”
Ocean Eng.
127
,
279
(
2016
).
3.
C. C.
Feng
, “
The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders
,” Master’s thesis,
University of British Columbia
,
1968
.
4.
A.
Khalak
and
C. H. K.
Willamson
, “
Motions, forces and mode transitions in vortex-induced vibration at low mass-damping
,”
J. Fluids Struct.
13
,
813
(
1999
).
5.
C. H. K.
Williamson
and
R.
Govardhan
, “
Vortex-induced vibrations
,”
Annu. Rev. Fluid Mech.
36
,
413
(
2004
).
6.
T. L.
Morse
and
C. H. K.
Williamson
, “
The effect of Reynolds number on the critical mass phenomenon in vortex-induced vibration
,”
Phys. Fluids
21
,
045105
(
2009
).
7.
C. H. K.
Williamson
and
A.
Roshko
, “
Vortex formation in the wake of an oscillating cylinder
,”
J. Fluids Struct.
2
,
355
(
1988
).
8.
E.
Guilmineau
and
P.
Queutey
, “
Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow
,”
J. Fluids Struct.
19
,
449
(
2004
).
9.
S. P.
Singh
and
S.
Mittal
, “
Vortex-induced oscillations at low Reynolds numbers: Hysteresis and vortex-shedding modes
,”
J. Fluids Struct.
20
,
1085
(
2005
).
10.
R. D.
Gabbai
and
H.
Benaroya
, “
An overview of modeling and experiments of vortex-induced vibration of circular cylinders
,”
J. Sound Vib.
282
,
575
(
2005
).
11.
P. W.
Bearman
, “
Circular cylinder wakes and vortex-induced vibrations
,”
J. Fluids Struct.
27
,
648
(
2011
).
12.
C. H. K.
Williamson
and
R.
Govardhan
, “
A brief review of recent results in vortex-induced vibrations
,”
J. Wind. Eng. Ind. Aerodyn.
96
,
713
(
2008
).
13.
E.
Fontaine
,
J. P.
Morel
,
Y. M.
Scolan
, and
T.
Rippol
, “
Riser interference and VIV amplification in tandem configuration
,”
Int. J. Offshore Polar Eng.
16
,
33
(
2006
), see https://www.onepetro.org/conference-paper/ISOPE-I-05-153.
14.
A.
Bokaian
and
F.
Geoola
, “
Wake-induced galloping of two interfering circular cylinders
,”
J. Fluid Mech.
146
,
383
(
1984
).
15.
D.
Sumner
, “
Two circular cylinders in cross-flow: A review
,”
J. Fluids Struct.
26
,
849
(
2010
).
16.
G. R. S.
Assi
,
J. R.
Meneghini
,
J. A. P.
Aranha
,
P. W.
Bearman
, and
E.
Casaprima
, “
Experimental investigation of flow-induced vibration interference between two circular cylinders
,”
J. Fluids Struct.
22
,
819
(
2006
).
17.
S.
Mittal
and
V.
Kumar
, “
Vortex induced vibrations of a pair of cylinders at Reynolds number 1000
,”
Int. J. Comput. Fluid Dyn.
18
,
601
(
2004
).
18.
S.
Mittal
,
V.
Kumar
, and
A.
Raghuvanshi
, “
Unsteady incompressible flows past two cylinders in tandem and staggered arrangements
,”
Int. J. Numer. Methods Fluids
25
,
1315
(
1997
).
19.
F. J.
Huera-Huarte
and
M.
Gharib
, “
Flow-induced vibrations of a side-by-side arrangement of two flexible circular cylinders
,”
J. Fluids Struct.
27
,
354
(
2011
).
20.
Y.
Liu
,
R. M. C.
So
,
Y. L.
Lau
, and
Y.
Zhou
, “
Numerical studies of two side-by-side elastic cylinders in a cross-flow
,”
J. Fluids Struct.
15
,
1009
(
2001
).
21.
M.
Zhao
, “
Flow induced vibration of two rigidly coupled circular cylinders in tandem and side-by-side arrangements at a low Reynolds number of 150
,”
Phys. Fluids
25
,
123601
(
2013
).
22.
M.
Zhao
and
G. R.
Yan
, “
Numerical simulation of vortex-induced vibration of two circular cylinders of different diameters at low Reynolds number
,”
Phys. Fluids
25
,
083601
(
2013
).
23.
A. B.
Harichandan
and
A.
Roy
, “
Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme
,”
Int. J. Heat Fluid Flow
31
,
154
(
2010
).
24.
T.
Igarashi
and
K.
Suzuki
, “
Characteristics of the flow around three circular cylinders
,”
Bull. JSME
27
,
2397
(
1984
).
25.
X.
Shi
and
G. F.
Christopher
, “
Growth of viscoelastic instabilities around linear cylinder arrays
,”
Phys. Fluids
28
,
124102
(
2016
).
26.
T.
Masakazu
,
A.
Hajime
, and
I.
Koji
, “
Effects of interference among three equidistantly arranged cylinders in a uniform flow
,”
Fluid Dyn. Res.
22
,
297
(
1998
).
27.
K.
Lam
and
W. C.
Cheung
, “
Phenomena of vortex shedding and flow interference of three cylinders in different equilateral arrangements
,”
J. Fluid Mech.
196
,
1
(
1988
).
28.
S.
Zheng
,
W.
Zhang
, and
X.
Lv
, “
Numerical simulation of cross-flow around three equal diameter cylinders in an equilateral-triangular configuration at low Reynolds numbers
,”
Comput. Fluids
130
,
94
(
2016
).
29.
Y.
Bao
,
D.
Zhou
, and
C.
Huang
, “
Numerical simulation of flow over three circular cylinders in equilateral arrangements at low Reynolds number by a second-order characteristic-based split finite element method
,”
Comput. Fluids
39
,
882
(
2010
).
30.
Y.
Kubo
,
T.
Nakahara
, and
K.
Kato
, “
Aerodynamic behavior of multiple elastic circular cylinders with vicinity arrangement
,”
J. Wind. Eng. Ind. Aerodyn.
54-55
,
227
(
1995
).
31.
F.
Xu
and
J.-p.
Ou
, “
Numerical simulation of vortex-induced vibration of three cylinders subjected to a cross flow in equilateral arrangement
,”
Acta Aerodyn. Sin.
28
,
582
(
2010
).
32.
H.
Wang
,
G.
Yu
, and
W.
Yang
, “
Numerical study of vortex-induced vibrations of three circular cylinders in equilateral-triangle arrangement
,”
Adv. Mech. Eng.
5
,
287923
(
2015
).
33.
J. H.
Leinhard
,
Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders
(
Washington State University College of Engineering
,
1966
).
34.
M. M.
Bernitsas
,
K.
Raghavan
,
Y.
Ben-Simon
, and
E. M.
Garcia
, “
VIVACE (vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow
,”
J. Energy Resour. Technol.
130
,
041101
(
2008
).
35.
A.
Khalak
and
C. H. K.
Williamson
, “
Dynamics of a hydroelastic cylinder with very low mass and damping
,”
J. Fluids Struct.
10
,
455
(
1996
).
36.
P. R. F.
Teixeira
and
A. M.
Awruch
, “
Numerical simulation of fluid–structure interaction using the finite element method
,”
Comput. Fluids
34
,
249
(
2005
).
37.
B.
Zhang
,
B.
Song
,
Z.
Mao
,
W.
Tian
, and
B.
Li
, “
Numerical investigation on VIV energy harvesting of bluff bodies with different cross sections in tandem arrangement
,”
Energy
133
,
723
(
2017
).
38.
J. F.
Deü
and
D.
Matignon
, “
Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme
,”
Comput. Math. Appl.
59
,
1745
(
2010
).
39.
Z. P.
Zang
,
F. P.
Gao
, and
J. S.
Cui
, “
Physical modeling and swirling strength analysis of vortex shedding from near-bed piggyback pipelines
,”
Appl. Ocean Res.
40
,
50
(
2013
).
40.
W. L.
Tian
,
Z. Y.
Mao
,
X. Y.
An
,
B. S.
Zhang
, and
H. B.
Wen
, “
Numerical study of energy recovery from the wakes of moving vehicles on highways by using a vertical axis wind turbine
,”
Energy
141
,
715
(
2017
).
41.
A.
Khalak
and
C. H. K.
Williamson
, “
Fluid forces and dynamics of a hydroelastic structure with very low mass and damping
,”
J. Fluids Struct.
11
,
973
(
1997
).
42.
Z. Y.
Pan
,
W. C.
Cui
, and
Q. M.
Miao
, “
Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code
,”
J. Fluids Struct.
23
,
23
(
2007
).
43.
L.
Lin
and
Y.-y.
Wang
, “
Comparison between different turbulence models on vortex induced vibration of circular cylinder
,”
J. Ship Mech.
17
,
1115
(
2013
).
44.
P. W.
Bearman
, “
Vortex shedding from oscillating bluff bodies
,”
Annu. Rev. Fluid Mech.
16
,
195
(
1984
).
45.
P. W.
Bearman
and
E. D.
Obasaju
, “
An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders
,”
J. Fluid Mech.
119
,
297
(
1982
).
46.
H.
Al-Jamal
and
C.
Dalton
, “
Vortex induced vibrations using large eddy simulation at a moderate Reynolds number
,”
J. Fluids Struct.
19
,
73
(
2004
).
47.
N. B.
Khan
,
Z.
Ibrahim
,
N.
Ltt
,
M. F.
Javed
, and
M.
Jameel
, “
Numerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re = 104) and low mass ratio using the RANS code
,”
PLoS One
12
,
e0185832
(
2017
).
48.
M.
Zhao
and
L.
Cheng
, “
Numerical simulation of two-degree-of-freedom vortex-induced vibration of a circular cylinder close to a plane boundary
,”
J. Fluids Struct.
27
,
1097
(
2011
).
49.
Z.
Cui
,
M.
Zhao
,
B.
Teng
, and
L.
Cheng
, “
Two-dimensional numerical study of vortex-induced vibration and galloping of square and rectangular cylinders in steady flow
,”
Ocean Eng.
106
,
189
(
2015
).
50.
E. J.
Chae
,
D. T.
Akcabay
,
A.
Lelong
,
J. A.
Astolfi
, and
Y. L.
Young
, “
Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils
,”
Phys. Fluids
28
,
075102
(
2016
).
51.
D.
Lucor
,
J.
Foo
, and
G. E.
Karniadakis
, “
Vortex mode selection of a rigid cylinder subject to VIV at low mass-damping
,”
J. Fluids Struct.
20
,
483
(
2005
).
52.
R.
Govardhan
and
C. H. K.
Williamson
, “
Modes of vortex formation and frequency response of a freely vibrating cylinder
,”
J. Fluid Mech.
420
,
85
(
2000
).
You do not currently have access to this content.