We study the capability of the One-Dimensional-Turbulence (ODT) model to simulate the turbulent transport and mixing of multiple passive scalars in homogeneous isotropic stationary turbulence. To this end, forcing schemes that have been widely used for stationary three-dimensional direct numerical simulations are adapted to the ODT framework and the effects of the model and input parameters on the steady state properties are discussed. We observe the model’s ability to convincingly represent the physical features of single-scalar mixing and variance decay, but also its limited qualitative accuracy in the multiple scalar case, especially concerning the scalar joint probability density function, which is of importance for reactive flow computations.

1.
A. R.
Kerstein
, “
A linear-eddy model of turbulent scalar transport and mixing
,”
Combust. Sci. Technol.
60
,
391
421
(
1988
).
2.
P. A.
McMurtry
,
T. C.
Gansauge
,
A. R.
Kerstein
, and
S. K.
Krueger
, “
Linear eddy simulations of mixing in a homogeneous turbulent flow
,”
Phys. Fluids A
5
,
1023
(
1993
).
3.
S.
Menon
and
W. H.
Calhoon
, “
Subgrid mixing and molecular transport modeling in a reacting shear layer
,”
Symp. (Int.) Combust.
26
,
59
66
(
1996
).
4.
T.
Lackmann
,
A. R.
Kerstein
, and
M.
Oevermann
, “
A representative linear eddy model for simulating spray combustion in engines (RILEM)
,”
Combust. Flame
193
,
1
15
(
2018
).
5.
C.
Yuan
,
F.
Laurent
, and
R. O.
Fox
, “
An extended quadrature method of moments for population balance equations
,”
J. Aerosol Sci.
51
,
1
23
(
2012
).
6.
E.
Madadi-Kandjani
,
R. O.
Fox
, and
A.
Passalacqua
, “
Application of the Fokker-Planck molecular mixing model to turbulent scalar mixing using moment methods
,”
Phys. Fluids
29
,
065109
(
2017
).
7.
S. B.
Pope
, “
Simple models of turbulent flows
,”
Phys. Fluids
23
,
011301
(
2011
).
8.
D. W.
Meyer
and
P.
Jenny
, “
Accurate and computationally efficient mixing models for the simulation of turbulent mixing with PDF methods
,”
J. Comput. Phys.
247
,
192
207
(
2013
).
9.
A.
Juneja
and
S. B.
Pope
, “
A DNS study of turbulent mixing of two passive scalars
,”
Phys. Fluids
8
,
2161
2184
(
1996
).
10.
W. T.
Ashurst
and
A. R.
Kerstein
, “
One-dimensional turbulence: Variable-density formulation and application to mixing layers
,”
Phys. Fluids
17
,
025107
(
2005
).
11.
A. R.
Kerstein
,
W. T.
Ashurst
,
S.
Wunsch
, and
V.
Nilsen
, “
One-dimensional turbulence: Vector formulation and application to free shear flows
,”
J. Fluid Mech.
447
,
85
109
(
2001
).
12.
A. R.
Kerstein
, “
Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing fields
,”
J. Fluid Mech.
231
,
361
394
(
1991
).
13.
A. R.
Kerstein
, “
Linear-Eddy modeling of turbulent transport. Part 4. Structure of diffusion flames
,”
Combust. Sci. Technol.
81
,
75
96
(
1992
).
14.
A.
Kerstein
, “
ODT: Stochastic simulation of multi-scale dynamics
,”
Interdisciplinary Aspects of Turbulence
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2008
), Vol. 221, pp.
1
43
.
15.
A. R.
Kerstein
, “
One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows
,”
J. Fluid Mech.
392
,
277
334
(
1999
).
16.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
); e-print arXiv:1011.1669v3.
17.
T. S.
Lundgren
, “
Linear forced isotropic turbulence
,” Technical Report No. 2,
Minnesota University of Minneapolis
,
2003
.
18.
C.
Rosales
and
C.
Meneveau
, “
Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties
,”
Phys. Fluids
17
,
095106
(
2005
).
19.
P. L.
Carroll
and
G.
Blanquart
, “
A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence
,”
Phys. Fluids
25
,
105114
(
2013
).
20.
M.
Bassenne
,
J.
Urzay
,
G. I.
Park
, and
P.
Moin
, “
Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows
,”
Phys. Fluids
28
,
035114
(
2016
).
21.
Y.
Li
,
E.
Perlman
,
M.
Wan
,
Y.
Yang
,
C.
Meneveau
,
R.
Burns
,
S.
Chen
,
A.
Szalay
, and
G.
Eyink
, “
A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence
,”
J. Turbul.
9
,
1
29
(
2008
); e-print arXiv:0804.1703.
22.
V.
Eswaran
and
S. B.
Pope
, “
An examination of forcing in direct numerical simulations of turbulence
,”
Comput. Fluids
16
,
257
278
(
1988
).
23.
D. T.
Gillespie
, “
Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral
,”
Phys. Rev. E
54
,
2084
2091
(
1996
).
24.
W. T.
Ashurst
,
A. R.
Kerstein
,
L. M.
Pickett
, and
J. B.
Ghandhi
, “
Passive scalar mixing in a spatially developing shear layer: Comparison of one-dimensional turbulence simulations with experimental results
,”
Phys. Fluids
15
,
579
582
(
2003
).
25.
N.
Punati
and
J. C.
Sutherland
, “
Application of an eulerian one dimensional turbulence model to simulation of turbulent jets
,” in
6th US National Combustion Meeting
, Ann Arbor, MI (
2009
), pp.
1
13
.
26.
A. J.
Ricks
,
J. C.
Hewson
,
A. R.
Kerstein
,
J. P.
Gore
,
S. R.
Tieszen
, and
W. T.
Ashurst
, “
A spatially developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames
,”
Combust. Sci. Technol.
182
,
60
101
(
2010
).
27.
N.
Punati
,
H.
Wang
,
E. R.
Hawkes
, and
J. C.
Sutherland
, “
One-dimensional modeling of turbulent premixed jet flames—Comparison to DNS
,”
Flow, Turbul. Combust.
97
,
913
930
(
2016
).
28.
V.
Eswaran
and
S. B.
Pope
, “
Direct numerical simulations of the turbulent mixing of a passive scalar
,”
Phys. Fluids
31
,
506
(
1988
).
29.
B. I.
Shraiman
and
E. D.
Siggia
, “
Lagrangian path integrals and fluctuations in random flow
,”
Phys. Rev. E
49
,
2912
2927
(
1994
).
30.
J. P.
Gollub
,
J.
Clarke
,
M.
Gharib
,
B.
Lane
, and
O. N.
Mesquita
, “
Fluctuations and transport in a stirred fluid with a mean gradient
,”
Phys. Rev. Lett.
67
,
3507
3510
(
1991
).
31.
G.
Kosály
, “
Scalar mixing in isotropic turbulence
,”
Phys. Fluids A
1
,
758
760
(
1989
).
You do not currently have access to this content.