Controlling internal flow in evaporating sessile droplets is desirable across applications ranging from lab-on-chip medical diagnostics, DNA profiling to surface patterning. Diffusion limited evaporation in droplets exhibit very low internal flow velocities [∼O(10−6) m/s]. Enhancement of internal flow is useful for applications which demand in situ mixing at small scale fluidic systems but limited by the low Reynolds number. To overcome this limitation, we present a non-intrusive methodology to enhance flow inside the droplets without affecting its global evaporation pattern. A highly volatile ethanol droplet is positioned asymmetrically in the vicinity of a water droplet. The ethanol molecules are consequently adsorbed asymmetrically on the air-water interface creating a gradient in surface tension. This causes an internal Marangoni convection with flow rates ∼O (103) times higher than a naturally evaporating water droplet. The inter-droplet distance between ethanol-water is used as a control parameter to vary the strength of Marangoni convection. The flow pattern transitions through several regimes from asymmetric to symmetric double toroid once the ethanol droplet completely evaporates. Experimental flow visualization and quantification by micro-particle image velocimetry have been used alongside simple scaling arguments to quantify the physical mechanism at play. We can also switch between different flow patterns by strategic dispensing of ethanol droplets.

1.
Q.
Li
,
Y. T.
Zhu
,
I. A.
Kinloch
, and
A. H.
Windle
, “
Self-organization of carbon nanotubes in evaporating droplets
,”
J. Phys. Chem. B
110
,
13926
(
2006
).
2.
B.
Su
,
S.
Wang
,
J.
Ma
,
Y.
Song
, and
L.
Jiang
, “
‘Clinging-microdroplet’ patterning upon high-adhesion, pillar-structured silicon substrates
,”
Adv. Funct. Mater.
21
,
3297
(
2011
).
3.
B.-J.
de Gans
,
P. C.
Duineveld
, and
U. S.
Schubert
, “
Inkjet printing of polymers: State of the art and future developments
,”
Adv. Mater.
16
,
203
(
2004
).
4.
W.
Xu
,
R.
Leeladhar
,
Y.-T.
Tsai
,
E.-H.
Yang
, and
C.-H.
Choi
, “
Assembly of nanowires on superhydrophobic surfaces of nanotip latching structures
,”
Appl. Phys. Lett.
98
,
073101
(
2011
).
5.
G.
Ciasca
,
L.
Businaro
,
M.
Papi
,
A.
Notargiacomo
,
M.
Chiarpotto
,
A.
De Ninno
,
V.
Palmieri
,
S.
Carta
,
E.
Giovine
,
A.
Gerardino
, and
M.
De Spirito
, “
Self-assembling of large ordered DNA arrays using superhydrophobic patterned surfaces
,”
Nanotechnology
24
,
495302
(
2013
).
6.
H.
Hu
and
R. G.
Larson
, “
Analysis of the microfluid flow in an evaporating sessile droplet
,”
Langmuir
21
,
3963
(
2005
).
7.
B.
Sobac
and
D.
Brutin
, “
Triple-line behavior and wettability controlled by nanocoated substrates: Influence on sessile drop evaporation
,”
Langmuir
27
,
14999
(
2011
).
8.
A. K. H.
Cheng
,
D. M.
Soolaman
, and
H. Z.
Yu
, “
Evaporation of microdroplets of ethanol-water mixtures on gold surfaces modified with self-assembled monolayers
,”
J. Phys. Chem. B
110
,
11267
(
2006
).
9.
T.
Still
,
P. J.
Yunker
, and
A. G.
Yodh
, “
Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops
,”
Langmuir
28
,
4984
(
2012
).
10.
X.
Shen
,
C.-M.
Ho
, and
T.-S.
Wong
, “
Minimal size of coffee ring structure
,”
J. Phys. Chem. B
114
,
5269
(
2010
).
11.
C.
Bouchenna
,
M.
Aitsaada
,
S.
Chikh
, and
L.
Tadrist
, “
Fluid flow inside and outside an evaporating sessile drop
,”
J. Phys.: Conf. Ser.
925
,
012006
(
2017
).
12.
K. H.
Kang
,
S. J.
Lee
,
C. M.
Lee
, and
I. S.
Kang
, “
Quantitative visualization of flow inside an evaporating droplet using the ray tracing method
,”
Meas. Sci. Technol.
15
,
1104
(
2004
).
13.
H.
Hu
and
R. G.
Larson
, “
Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet
,”
Langmuir
21
,
3972
(
2005
).
14.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
,
827
(
1997
).
15.
F.
Mugele
,
J.-C.
Baret
, and
D.
Steinhauser
, “
Microfluidic mixing through electrowetting-induced droplet oscillations
,”
Appl. Phys. Lett.
88
,
204106
(
2006
).
16.
L.
Bansal
,
A.
Miglani
, and
S.
Basu
, “
Morphological transitions and buckling characteristics in a nanoparticle-laden sessile droplet resting on a heated hydrophobic substrate
,”
Phys. Rev. E
93
,
042605
(
2016
).
17.
S.
Dash
,
A.
Chandramohan
,
J. A.
Weibel
, and
S. V.
Garimella
, “
Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces
,”
Phys. Rev. E
90
,
062407
(
2014
).
18.
W.
Sempels
,
R.
De Dier
,
H.
Mizuno
,
J.
Hofkens
, and
J.
Vermant
, “
Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system
,”
Nat. Commun.
4
,
1757
(
2013
).
19.
J.
Park
and
J.
Moon
, “
Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing
,”
Langmuir
22
,
3506
(
2006
).
20.
L.
Bansal
,
S.
Chakraborty
, and
S.
Basu
, “
Confinement-induced alterations in the evaporation dynamics of sessile droplets
,”
Soft Matter
13
,
969
(
2017
).
21.
R.
Malinowski
,
G.
Volpe
,
I. P.
Parkin
, and
G.
Volpe
, “
Dynamic control of particle deposition in evaporating droplets by an external point source of vapor
,”
J. Phys. Chem. Lett.
9
,
659
(
2018
).
22.
A.
Shaikeea
,
S.
Basu
,
S.
Hatte
, and
L.
Bansal
, “
Insights into vapor-mediated interactions in a nanocolloidal droplet system: Evaporation dynamics and affects on self-assembly topologies on macro- to microscales
,”
Langmuir
32
,
10334
(
2016
).
23.
A.
Sanyal
and
S.
Basu
, “
Evolution of internal flows in mechanically oscillating sessile droplets undergoing evaporation
,”
Chem. Eng. Sci.
163
,
179
(
2017
).
24.
A.
Rida
and
M. A. M.
Gijs
, “
Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying
,”
Anal. Chem.
76
,
6239
(
2004
).
25.
K.
Kobayashi
,
A.
Goda
,
K.
Hasegawa
, and
Y.
Abe
, “
Flow structure and evaporation behavior of an acoustically levitated droplet
,”
Phys. Fluids
30
,
082105
(
2018
).
26.
E.
Bänsch
and
M.
Götz
, “
Numerical study of droplet evaporation in an acoustic levitator
,”
Phys. Fluids
30
,
037103
(
2018
).
27.
V.
Jaiswal
,
A. R.
Harikrishnan
,
G.
Khurana
, and
P.
Dhar
, “
Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets
,”
Phys. Fluids
30
,
012113
(
2018
).
28.
M.
Schmitt
and
H.
Stark
, “
Marangoni flow at droplet interfaces: Three-dimensional solution and applications
,”
Phys. Fluids
28
,
012106
(
2016
).
29.
A.
Walther
and
A. H. E.
Müller
, “
Janus particles
,”
Soft Matter
4
,
663
(
2008
).
30.
N. J.
Cira
,
A.
Benusiglio
, and
M.
Prakash
, “
Vapour-mediated sensing and motility in two-component droplets
,”
Nature
519
,
446
(
2015
).
31.
S.
Karpitschka
,
F.
Liebig
, and
H.
Riegler
, “
Marangoni contraction of evaporating sessile droplets of binary mixtures
,”
Langmuir
33
(
19
),
4682
(
2017
).
32.
J. R. E.
Christy
,
Y.
Hamamoto
, and
K.
Sefiane
, “
Flow transition within an evaporating binary mixture sessile drop
,”
Phys. Rev. Lett.
106
,
205701
(
2011
).
33.
C.
Liu
,
E.
Bonaccurso
, and
H.-J.
Butt
, “
Evaporation of sessile water/ethanol drops in a controlled environment
,”
Phys. Chem. Chem. Phys.
10
,
7150
(
2008
).
34.
Y.
Hamamoto
,
J. R. E.
Christy
, and
K.
Sefiane
, “
The flow characteristics of an evaporating ethanol water mixture droplet on a glass substrate
,”
J. Therm. Sci. Technol.
7
,
425
(
2012
).
35.
C.
Diddens
,
H.
Tan
,
P.
Lv
,
M.
Versluis
,
J. G. M.
Kuerten
,
X.
Zhang
, and
D.
Lohse
, “
Evaporating pure, binary and ternary droplets: Thermal effects and axial symmetry breaking
,”
J. Fluid Mech.
823
,
470
(
2017
).
36.
X.
Xu
,
J.
Luo
, and
D.
Guo
, “
Criterion for reversal of thermal Marangoni flow in drying drops
,”
Langmuir
26
,
1918
(
2010
).
37.
W. D.
Ristenpart
,
P. G.
Kim
,
C.
Domingues
,
J.
Wan
, and
H. A.
Stone
, “
Influence of substrate conductivity on circulation reversal in evaporating drops
,”
Phys. Rev. Lett.
99
,
234502
(
2007
).
38.
Y.
Zhao
, “
Moving contact line problem: Advances and perspectives
,”
Theor. Appl. Mech. Lett.
4
(
3
),
034002
(
2014
).
39.
Y.-S.
Yu
,
X.-L.
Xia
,
X.
Zheng
,
X.
Huang
, and
J.-Z.
Zhou
, “
Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface
,”
Sci. China: Phys., Mech. Astron.
60
,
094612
(
2017
).
40.
M. A.
Wilson
and
A.
Pohorille
, “
Adsorption and solvation of ethanol at the water liquid-vapor interface: A molecular dynamics study
,”
J. Phys. Chem. B
101
,
3130
(
1997
).
41.
J. T.
Jayne
,
S. X.
Duan
,
P.
Davidovits
,
D. R.
Worsnop
,
M. S.
Zahniser
, and
C. E.
Kolb
, “
Uptake of gas-phase alcohol and organic acid molecules by water surfaces
,”
J. Phys. Chem.
95
,
6329
(
1991
).
42.
G. M.
Nathanson
,
P.
Davidovits
,
D. R.
Worsnop
, and
C. E.
Kolb
, “
Dynamics and kinetics at the gas-liquid interface
,”
J. Phys. Chem.
100
,
13007
(
1996
).
43.
D. R.
Worsnop
,
M. S.
Zahniser
,
C. E.
Kolb
,
J. A.
Gardner
,
L. R.
Watson
,
J. M.
Van Doren
,
J. T.
Jayne
, and
P.
Davidovits
, “
The temperature dependence of mass accommodation of sulfur dioxide and hydrogen peroxide on aqueous surfaces
,”
J. Phys. Chem.
93
,
1159
(
1989
).
44.
K. L.
Mittal
,
Contact Angle, Wettability and Adhesion
(
CRC Press, London
,
2006
), Vol. 4, pp. 3, 79, 103.
45.
S.
Chandra
,
M.
di Marzo
,
Y. M.
Qiao
, and
P.
Tartarini
, “
Effect of liquid-solid contact angle on droplet evaporation
,”
Fire Saf. J.
27
,
141
(
1996
).
46.
K.
Sefiane
,
L.
Tadrist
, and
M.
Douglas
, “
Experimental study of evaporating water-ethanol mixture sessile drop: Influence of concentration
,”
Int. J. Heat Mass Transfer
46
,
4527
(
2003
).
47.
G.
Vazquez
,
E.
Alvarez
, and
J. M.
Navaza
, “
Surface tension of alcohol water + water from 20 to 50 °C
,”
J. Chem. Eng. Data
40
,
611
(
1995
).
You do not currently have access to this content.