The particle-based ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model is extended to diatomic molecules and compared with the Direct Simulation Monte Carlo (DSMC) method. For this, an efficient method is developed that optionally allows the handling of quantized vibrational energies. The proposed method is verified with a gas in an adiabatic box relaxing from a non-equilibrium state to an equilibrium. It is shown that the analytical Landau-Teller expression as well as DSMC results agrees very well with the new method. Furthermore, the method is compared with DSMC results and experimental measurements of a hypersonic flow around a 70° blunted cone. It is shown that the ESBGK compares very well with the DSMC results while saving up to a factor of ≈35.8 computational time for this low Knudsen number case.

1.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
, 2nd ed. (
Oxford University Press
,
New York
,
1994
).
2.
A.
Mirza
,
P.
Nizenkov
,
M.
Pfeiffer
, and
S.
Fasoulas
, “
Three-dimensional implementation of the low diffusion method for continuum flow simulations
,”
Comput. Phys. Commun.
220
,
269
278
(
2017
).
3.
J.
Burt
and
I.
Boyd
, “
Evaluation of a particle method for the ellipsoidal statistical Bhatnagar-Gross-Krook equation
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2006
), p.
989
.
4.
E.
Titov
,
R.
Kumar
,
D.
Levin
,
N.
Gimelshein
, and
S.
Gimelshein
, “
Analysis of different approaches to modeling of nozzle flows in the near continuum regime
,”
AIP Conf. Proc.
1084
,
978
984
(
2008
).
5.
O.
Tumuklu
,
Z.
Li
, and
D. A.
Levin
, “
Particle ellipsoidal statistical Bhatnagar-Gross-Krook approach for simulation of hypersonic shocks
,”
AIAA J.
54
,
3701
3716
(
2016
).
6.
M.
Pfeiffer
, “
Particle-based fluid dynamics: Comparison of different Bhatnagar-Gross-Krook models and the direct simulation Monte Carlo method for hypersonic flows
,”
Phys. Fluids
30
,
106106
(
2018
).
7.
F.
Fei
,
J.
Zhang
,
J.
Li
, and
Z.
Liu
, “
A unified stochastic particle Bhatnagar-Gross-Krook method for multiscale gas flows
,” preprint arXiv:1808.03801 (
2018
).
8.
E.
Shakhov
, “
Generalization of the Krook kinetic relaxation equation
,”
Fluid Dyn.
3
,
95
96
(
1968
).
9.
L. H.
Holway
, Jr.
, “
New statistical models for kinetic theory: Methods of construction
,”
Phys. Fluids
9
,
1658
1673
(
1966
).
10.
M.
Gallis
and
J.
Torczynski
, “
Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls
,”
Phys. Fluids
23
,
030601
(
2011
).
11.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
(
1954
).
12.
P.
Andries
,
P.
Le Tallec
,
J.-P.
Perlat
, and
B.
Perthame
, “
The Gaussian-BGK model of Boltzmann equation with small Prandtl number
,”
Eur. J. Mech.: B/Fluids
19
,
813
830
(
2000
).
13.
P.
Andries
and
B.
Perthame
, “
The ES-BGK model equation with correct Prandtl number
,”
AIP Conf. Proc.
585
,
30
36
(
2001
).
14.
C.
Zhang
and
T. E.
Schwartzentruber
, “
Inelastic collision selection procedures for direct simulation Monte Carlo calculations of gas mixtures
,”
Phys. Fluids
25
,
106105
(
2013
).
15.
N. E.
Gimelshein
,
S. F.
Gimelshein
, and
D. A.
Levin
, “
Vibrational relaxation rates in the direct simulation Monte Carlo method
,”
Phys. Fluids
14
,
4452
(
2002
).
16.
M.
Pfeiffer
,
P.
Nizenkov
,
A.
Mirza
, and
S.
Fasoulas
, “
Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases
,”
Phys. Fluids
28
,
027103
(
2016
).
17.
Q.
Sun
and
I. D.
Boyd
, “
Evaluation of macroscopic properties in the direct simulation Monte Carlo method
,”
J. Thermophys. Heat Transfer
19
,
329
335
(
2005
).
18.
B. L.
Haas
,
D. B.
Hash
,
G. A.
Bird
,
F. E.
Lumpkin
, and
H. A.
Hassan
, “
Rates of thermal relaxation in direct simulation Monte Carlo methods
,”
Phys. Fluids
6
,
2191
(
1994
).
19.
C.-D.
Munz
,
M.
Auweter-Kurtz
,
S.
Fasoulas
,
A.
Mirza
,
P.
Ortwein
,
M.
Pfeiffer
, and
T.
Stindl
, “
Coupled particle-in-cell and direct simulation Monte Carlo method for simulating reactive plasma flows
,”
C. R. Mec.
342
,
662
670
(
2014
).
20.
M.
Gallis
and
J.
Torczynski
, “
The application of the BGK model in particle simulations
,” in
34th Thermophysics Conference
(
AIAA
,
2000
), p.
2360
.
21.
J.
Allègre
,
D.
Bisch
, and
J. C.
Lengrand
, “
Experimental rarefied heat transfer at hypersonic conditions over 70-degree blunted cone
,”
J. Spacecr. Rockets
34
,
724
728
(
1997
).
22.
P.
Nizenkov
,
P.
Noeding
,
M.
Konopka
, and
S.
Fasoulas
, “
Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications
,”
CEAS Space J.
9
,
127
137
(
2017
).
23.
M.
Pfeiffer
and
M.
Gorji
, “
Adaptive particle-cell algorithm for Fokker-Planck based rarefied gas flow simulations
,”
Comput. Phys. Commun.
213
,
1
8
(
2017
).
You do not currently have access to this content.